Skip to main content

Hypertension: Multiple Membrane Malfunctions

  • Chapter

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 30))

Abstract

In the past decade, two major developments have focused research interest on the cell membrane for the role it may play in the pathogenesis of hypertension. One development is based on the finding that the sensitivity of vascular smooth muscle increases in experimental hypertension. This increase is due to an altered membrane function of this tissue [1], It may be responsible for the increase in total peripheral resistance that causes the arterial pressure elevation. The second development is the evidence that the membrane abnormality in hypertension is present in many tissues [2, 3]. The membrane of the red blood cell has been mostly studied as a readily available marker for the disease and as a tool for study of the characteristics of the membrane malfunction.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Webb RC, Bohr DF: Recent advances in the pathogenesis of hypertension: Consideration of structural, functional, and metabolic vascular abnormalities resulting in elevated arterial resistance. Am Heart J 102:251–264, 1981.

    Article  PubMed  CAS  Google Scholar 

  2. Devynck MA, Pernollet MG, Nunez AM, et al.: Analysis of calcium handling in erythrocyte membranes of genetically hypertensive rats. Hypertension 3:397–403, 1981.

    PubMed  CAS  Google Scholar 

  3. Devynck MA, Pernollet MG, Nunez AM, et al.: Calcium-binding alteration in plasma membrane from various tissues of spontaneously hypertensive rat. Clin Exp Hypertens 3:797–808, 1981.

    Article  PubMed  CAS  Google Scholar 

  4. Karaki H, Kobuto H, Urakawa N: Mobilization of stored calcium for phasic contraction induced by norepinephrine in rabbit aorta. Eur J Pharmacol 56:237–245, 1979.

    Article  PubMed  CAS  Google Scholar 

  5. Friedman SM, Nakashima M, Rosemary AM: Glass electrode measurement of net + and K+ fluxes in erythrocytes of the spontaneously hypertensive rat. Can J Physiol Pharmacol 55:1302–1310, 1977.

    Article  PubMed  CAS  Google Scholar 

  6. Wieth JO: Paradoxical temperature dependence of sodium and potassium fluxes in human red cells. J Physiol 207:563–580, 1970.

    PubMed  CAS  Google Scholar 

  7. Garay RP, Dagher G, Pernollet MG, et al.: Inherited defect in +, K+-co-transport system in erythrocytes from essential hypertensive patients. Nature 284:281, 1980.

    Article  PubMed  CAS  Google Scholar 

  8. Canessa M, Adragna N, Solomon HS, et al.: Increased sodium-lithium countertransport in red cells of patients with essential hypertension. N Engl J Med 302:772, 1980.

    Article  PubMed  CAS  Google Scholar 

  9. Postnov YV, Orlov SN, Pokudin NI: Decrease of calcium binding by the red blood cell membrane in spontaneously hypertensive rats and in essential hypertension. Pflugers Arch 379:191–195, 1979.

    Article  PubMed  CAS  Google Scholar 

  10. Postnov YV, Orlov SN: Evidence of altered calcium accumulation and calcium binding by the membranes of adipocytes in spontaneously hypertensive rats. Pflugers Arch 385:85–89, 1980.

    Article  PubMed  CAS  Google Scholar 

  11. Holloway ET, Bohr DF: Reactivity of vascular smooth muscle in hypertensive rats. Circ Res 33:678–685, 1973.

    PubMed  CAS  Google Scholar 

  12. Friedman SM, Friedman CL: Effect of aldosterone and hydrocortisone on sodium in red cells. Experientia 12:452–454, 1958.

    Article  Google Scholar 

  13. Petty KJ, Kokko JP, Marver D: Secondary effect of aldosterone on Na-K ATPase activity in the rabbit cortical collecting tubule. J Clin Invest 68:1514, 1981.

    Article  PubMed  CAS  Google Scholar 

  14. Bohr DF: What makes the pressure go up? Hypertension 3 (suppl II):160–165, 1981.

    CAS  Google Scholar 

  15. Hauesler G, Finch L, Thoenen H: Central adrenergic neurons and the initiation and development of experimental hypertension. Experientia 28:1200, 1972.

    Article  Google Scholar 

  16. Brody MJ, Fink GD, Buggy J, et al.: The role of the anteroventral third ventricle (AV3V) region in experimental hypertension. Circ Res 43 (suppl I): 1–2.

    Google Scholar 

  17. Miller AW, Bohr DF, Schork AM, et al.: Hemodynamic responses to DOCA in young pigs. Hypertension 1:591–597, 1979.

    PubMed  CAS  Google Scholar 

  18. Cohen DM, Grekin RJ, Mitchell J, et al.: Hemodynamic, endocrine, and electrolyte changes during sodium restriction in DOCA hypertensive pigs. Hypertension 2:490–496, 1980.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Martinus Nijhoff Publishers, Boston

About this chapter

Cite this chapter

Bohr, D.F., Harris, A.L., Guthe, C.C., Webb, R.C. (1984). Hypertension: Multiple Membrane Malfunctions. In: Villarreal, H., Sambhi, M.P. (eds) Topics in Pathophysiology of Hypertension. Developments in Cardiovascular Medicine, vol 30. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-6741-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-6741-0_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-009-6743-4

  • Online ISBN: 978-94-009-6741-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics