Skip to main content

Salt, diuretics and resistance to treatment

  • Chapter
Lifelong Management of Hypertension

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 26))

  • 44 Accesses

Abstract

Sodium occupies a central place in the pathogenesis and treatment of hypertension. This was recognized many years ago before chemotherapy for the treatment of hypertension was available. Kempner [1] used a rice diet providing 8 mEq of sodium to treat 500 patients. The diet was ineffective in 178 patients. In the patients successfully treated, the average blood pressure fall was 47 mmHg systolic and 21 mmHg diastolic. Today, diuretics constitute the first line of antihypertensive treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 16.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Kempner W: Treatment of hypertensive vascular disease with rice diet. Am J Med 4:545–577, 1948.

    Article  PubMed  CAS  Google Scholar 

  2. Pratt JH, Luft F: The effect of extremely high sodium intake on plasma renin activity, plasma aldosterone concentration, and urinary excretion of aldosterone metabolites. J Lab Clin Med 93:724–729, 1979.

    PubMed  CAS  Google Scholar 

  3. Bourgoignie JJ, Pennell JP, Jacob AI: Sodium metabolism and volume homeostasis. In: Gonick HC (ed) Current nephrology, Vol 3. Boston, Houghton Mifflin, 1979, p 1–40.

    Google Scholar 

  4. Stumpe KO, Lowitz HD, Ochwadt B: Function of juxtamedullary nephrons in normotensive and chronically hypertensive rats. Pflugers Arch 313:43–52, 1969.

    Article  PubMed  CAS  Google Scholar 

  5. Coleman TG, Holl JE, Norman RA Jr: Regulation of arterial blood pressure. In: Brenner BM, Stein JH (eds) Contemporary issues in nephrology. 8. Hypertension. New York, Churchill Livingstone, 1981, p 1–20.

    Google Scholar 

  6. Freis ED: Salt, volume and the prevention of hypertension. Circulation 53:589–595, 1976.

    PubMed  CAS  Google Scholar 

  7. Dustan HP, Tarazi RC, Bravo EL, Dart RA: Plasma and extracellular fluid volumes in hypertension. Circ Res 22:1 73-1 31, 1973.

    Google Scholar 

  8. Tarazi RC: Hemodynamic role of extracellular fluid in hypertension. Cir Res 25:11 73-11 183, 1976.

    Google Scholar 

  9. Mark AL, Gordon FJ, Takeshita A: Sodium, vascular resistance and genetic hypertension. In: Brenner BM, Stein JH (eds): Contemporary issues in nephrology. 8. Hypertension, New York, Churchill Livingstone, 1981, pp 21–39.

    Google Scholar 

  10. Dahl LK, Heine M, Tassinari L: Role of genetic factors in susceptibility to experimental hypertension due to chronic excess salt ingestion. Nature 194:480–482, 1962.

    Article  PubMed  CAS  Google Scholar 

  11. Dahl LK, Heine M, Thompson K: Genetic influence of renal homografts on the blood pressure of rats from different strains. Proc Soc Exp Bio Med 140:852–855, 1972.

    CAS  Google Scholar 

  12. Dahl LK, Heine M, Thompson K: Genetic influence of the kidneys on blood pressure. Evidence from chronic renal homografts in rats with opposite predispositions to hypertension. Circ Res 34:94–101, 1974.

    Google Scholar 

  13. Bianchi G, Fox U, DiFrancesco GF, Giovanetti AM, Pagetti D: Blood pressure changes produced by kidney cross-transplantation between spontaneously hypertensive rats and normotensive rats. Clin Sci Mol Med 47:435–448, 1974.

    PubMed  CAS  Google Scholar 

  14. Kawabe K, Watanabe TX, Shione K, Sokabe H: Influence on blood pressure of renal isografts between spontaneously hypertensive and normotensive rats, utilizing the F hybrids. J Heart J 19:886–894, 1978.

    Article  CAS  Google Scholar 

  15. Tobian L, Lange J, Azar S, Iwai J, Koop D, Coffee K, Johnson MA: Reduction of natriuretic capacity and renin release in isolated, blood-perfused kidneys of Dahl hypertension-prone rats. Circ Res 43:192–198, 1978.

    Google Scholar 

  16. Favre H: Role of the natriuretic factor in the disorders of sodium balance. Adv Nephrol 11:3–25, 1982.

    CAS  Google Scholar 

  17. Overbeck HW: The sodium pump in cardiovascular muscle in hypertension: whose hypothesis? Clin Exp Hypertens 1:551–556, 1979.

    Article  PubMed  CAS  Google Scholar 

  18. Gruber KA, Whitaker JM, Buckalew VM Jr: Endogenous digitalis-like substance in plasma of volume-expanded dogs. Nature 287:743–745, 1980.

    Article  PubMed  CAS  Google Scholar 

  19. Haddy FJ: Mechanism, prevention and therapy of sodium-dependent hypertension. Am J Med 69:746–758, 1980.

    Article  PubMed  CAS  Google Scholar 

  20. de Wardener H, MacGregor GA: Dahl’s hypothesis that a saluretic substance may be responsible for a sustained rise in arterial pressure. Its possible role in essential hypertension. Kidney Int 18:1–9, 1980.

    Article  PubMed  Google Scholar 

  21. de Wardener HE: The natriuretic hormone. Proc 8th Int Congr Nephrol, Athens, 1981, pp 47-53.

    Google Scholar 

  22. Buckalew VM: Salt, natriuretic hormone and hypertension. Ann Int Med 95:511–512, 1981.

    PubMed  CAS  Google Scholar 

  23. Overbeck HW: Elevated arterial pressure, vascular wall ‘waterlogging’ and impaired cardiac growth in rats chronically receiving digoxin. Proc Soc Exp Biol Med 167:506–513, 1981.

    PubMed  CAS  Google Scholar 

  24. Gruber KA, Whitaker JM, Rudel LL, Bullock BC: Increased circulating levels of an endogenous digoxin-like factor in hypertensive non-human primates. Hypertension (in press).

    Google Scholar 

  25. Grantham JJ, Chonko AM: The physiological basis and clinical use of diuretics. In: Brenner BM, Stein JH Contemporary issues in nephrology, Vol 1. New York, Churchill Livingstone, 1978, pp 178–211.

    Google Scholar 

  26. Dirks JH: Mechanisms of action and clinical uses of diuretics. Hosp Pract 14:99–110, 1979.

    PubMed  CAS  Google Scholar 

  27. Iwai J, Ohanian EV, Dahl LK: Influence of thiazide on salt hypertension. Circ Res 40:1131–1134, 1977.

    Google Scholar 

  28. Shah S, Khatri I, Freis ED: Mechanism of antihypertensive effect of thiazide diuretics. Am Heart J 95:611–618, 1978.

    Article  PubMed  CAS  Google Scholar 

  29. Conway J, Lauwers P: Hemodynamic and hypotensive effects of long-term therapy with chloro-thiazide. Circulation 21:21–27, 1960.

    PubMed  CAS  Google Scholar 

  30. Orbison JL: Failure of chlorothiazide to influence tissue electrolytes in hypertensive and non-hypertensive nephrectomized dogs. Proc Soc Exp Biol Med 110:161–164, 1962.

    PubMed  CAS  Google Scholar 

  31. Bennett WM, McDonald WJ, Kuehnel E: Do diuretics have antihypertensive properties independent of natriuresis? Clin Pharmacol Ther 22:499–504, 1977.

    PubMed  CAS  Google Scholar 

  32. Tarazi RC: Management of the patient with resistant hypertension. Hosp Pract 16:49–57, 1981.

    CAS  Google Scholar 

  33. Finnerty FA, Davidov M, Mroczek WJ, Gavrilovich L: Influence of extracellular fluid volume on response to antihypertensive drugs. Circ Res 26:171–180, 1970.

    Google Scholar 

  34. Ram CVS, Garrett BN, Kaplan NM: Moderate sodium restriction and various diuretics in the treatment of hypertension. Effects on potassium wastage and blood pressure control. Arch Intern Med 141:1015–1019, 1981.

    Article  PubMed  CAS  Google Scholar 

  35. Kaplan NM: Management strategies in hypertension. In: Brenner BM, Stein JH (eds) Contemporary issues in nephrology, Vol 8. New York, Churchill Livingstone, 1981, pp 339–369.

    Google Scholar 

  36. Tweeddale MG, Ogilvie RI, Reudy J: Antihypertensive and biochemical effects of chlor-thalidone. Clin Pharmac Ther 22:519–527, 1977.

    CAS  Google Scholar 

  37. Romero JC, Holmes DR, Strong CG: The effect of high sodium intake and angiotensin antagonist in rabbits with severe and moderate hypertension induced by constriction of one renal artery. Circ Res 40:117–123, 1977.

    Google Scholar 

  38. Atlas SA, Case DB, Sealey JE, Laragh JH, McKinstry DN: Interruption of the renin-angio-tensin system in hypertensive patients by captopril induces sustained reduction in aldosterone secretion, potassium retention and natriuresis. Hypertension 1:274–280, 1979.

    PubMed  CAS  Google Scholar 

  39. Patak RV, Mookerjee BK, Bentzel CJ, Hysert PE, Babej M, Lee JB: Antagonism of the effects of furosemide by indomethacin in normal and hypertensive man. Prostaglandins 10:649–659, 1975.

    Article  PubMed  CAS  Google Scholar 

  40. Williamson HE, Bourland WA, Marchand GR: Inhibition of ethacrynic acid induced increase in renal blood flow by indomethacin. Prostaglandins 8:297–301, 1974.

    Article  PubMed  CAS  Google Scholar 

  41. Tweeddale MD, Ogilvie RI: Antagonism of spironolactone-induced natriuresis by aspirin in man. N Engl J Med 289:198–200, 1973.

    Article  PubMed  CAS  Google Scholar 

  42. Bailie MD, Barbour JA, Hook JB: Effects of indomethacin on furosemide-induced changes in renal blood flow. Proc Soc Exp Biol Med 148:1173–1176, 1975.

    PubMed  CAS  Google Scholar 

  43. Williamson HE, Bourland WA, Marchand GR: Inhibition of furosemide induced increase in renal blood blow by indomethacin. Proc Soc Exp Biol Med 148:164–167, 1975.

    CAS  Google Scholar 

  44. Hoffman LM, Garcia HA: Interaction of spironolactone and indomethacin at the renal level. Proc Soc Exp Biol Med 141:353–355, 1972.

    Google Scholar 

  45. Berg KJ, Loew D: Inhibition of furosemide-induced natriuresis by acetylsalicylic acid in dogs. Scand J Clin Lab Invest 37:125–131, 1977.

    Article  PubMed  CAS  Google Scholar 

  46. Lopez-Ovejero JA, Weber MA, Droyer JIM, Sealey JE, Laragh JH: Effects of indomethacin alone and during diuretic or β-adrenoreceptor blockade therapy on blood pressure and the renin system in essential hypertension. Clin Sci Mol Med 55:203–207, 1978.

    Google Scholar 

  47. Attaiah AA: Interaction of prostaglandins with diuretics. Prostaglandins 18:369–375, 1979.

    Article  Google Scholar 

  48. Patak RV, Fadem SZ, Rosenblatt SG, Lifschitz MD, Stein JH: Diuretic induced-changes in renal blood flow and prostaglandin E excretion in the dog. Am J Physiol 236:F494–F500, 1979.

    PubMed  CAS  Google Scholar 

  49. Smith DE, Brater DC, Lin ET et al: Attenuation of furosemide’s diuretic effect by indomethacin: pharmacokinetic evaluation. J Pharmacokinet Biopharm 7:265–274, 1979.

    Article  PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Martinus Nijhoff Publishers, Boston

About this chapter

Cite this chapter

Bourgoignie, J.J. (1983). Salt, diuretics and resistance to treatment. In: Perry, H.M. (eds) Lifelong Management of Hypertension. Developments in Cardiovascular Medicine, vol 26. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-6732-8_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-6732-8_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-009-6734-2

  • Online ISBN: 978-94-009-6732-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics