Skip to main content

Detection and Quantification of Acute Myocardial Infarction by Myocardial Scintigraphy

  • Chapter
Advances in Noninvasive Cardiology

Part of the book series: Developments in Cardiovascular Medicine ((DICM,volume 24))

  • 44 Accesses

Abstract

Detection and quantification of acute myocardial infarction were some of the most important goals in cardiology in recent years, since, in both acute and old myocardial infarction, morbidity and mortality are related to the extent of myocardial damage [1, 2, 3]. Furthermore, this has become particularly important because of new attempts for the treatment of acute infarction in the early stage [4]. In order to evaluate the success of therapeutic interventions it is necessary to get an estimate of infarct size as soon as possible. An ideal method should differentiate between normal myocardium, jeopardized tissue (which means myocardium that basically might be saved by interventions) and necrotic irreversibly damaged muscle. This has been shown experimentally by special staining methods in vitro, but so far not in vivo [5].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Hillis LD, Braunwald E: Myocardial ischemia. N Engl J Med 296:971, 1034, 1093, 1977.

    Article  PubMed  CAS  Google Scholar 

  2. Geltman EM, Ehsani AA, Campbell MK, et al: The influence of location and extent of myocardial infarction on long-term ventricular dysrhythmic and mortality. Circulation 60:805, 1979.

    PubMed  CAS  Google Scholar 

  3. Sobel BE, Bresnahan GF, Shell WE, et al: Estimation of infarct size in man and its relation to prognosis. Circulation 46:640, 1972.

    PubMed  CAS  Google Scholar 

  4. Rentrop P, Blanke H, Karsch K, et al: Selective intracoronary thrombolysis in acute myocardial infarction and unstable angina pectoris. Circulation 63:307, 1981.

    Article  PubMed  CAS  Google Scholar 

  5. Fishbein MC, Meerbaum S, Rit J, et al: Early phase acute myocardial infarct size quantification: validation of the triphenyl tetrazolium chloride tissue enzyme staining technique. Am H J 101:593, 1981.

    Article  CAS  Google Scholar 

  6. Norris RM, Whitlock RML, Barratt-Boyes C, et al: Clinical measurement of myocardial infarct size. Modification of a method for the estimation of total creatine Phosphokinase release after myocardial infarction. Circulation 51:614, 1975.

    PubMed  CAS  Google Scholar 

  7. Bleifeld W, Mathey D, Hanrath P, et al: Infarct size estimated from serial serum creatine Phosphokinase in relation to left ventricular hemodynamics. Circulation 55:303, 1977.

    PubMed  CAS  Google Scholar 

  8. Nixon JV, Narahara KA, Smitherman TC, et al: Estimation of myocardial involvement in patients with acute myocardial infarction by two-dimensional echocardiography. Circulation 62:1248, 1980.

    PubMed  CAS  Google Scholar 

  9. Rigo P, Murray M, Strauss HW, et al: Left ventricular function in acute myocardial infarction evaluated by gated scintigraphy. Circulation 50:678, 1974.

    PubMed  CAS  Google Scholar 

  10. Strauss HW, Harrison K, Langan JK, et al: Thallium 201 for myocardial imaging. Relation of thallium 201 to regional myocardial perfusion. Circulation 51:641, 1975.

    PubMed  CAS  Google Scholar 

  11. Parkey JP, Bonte FJ, Meyer SL, et al: A new method for radionuclide imaging of acute myocardial infarction in humans. Circulation 50:540, 1974.

    PubMed  CAS  Google Scholar 

  12. Pitt B, Thrall JH: Thallium-201 versus technetium-99m pyrophosphate myocardial imaging in detection and evaluation of patients with acute myocardial infarction. Am J Cardiol 46:1215, 1980.

    Article  PubMed  CAS  Google Scholar 

  13. Bailey IK, Griffith LSC, Rouleau J, et al: Thallium-201 myocardial perfusion imaging at rest and during exercise: comparative sensitivity to electrocardiography in coronary artery disease. Circulation 55:79, 1977.

    PubMed  CAS  Google Scholar 

  14. Wackers FJT, Sokole EB, Samson G, et al: Value and limitations of thallium-201 scintigraphy in the acute phase of myocardial infarction. N Engl J Med 295:1, 1976.

    Article  PubMed  CAS  Google Scholar 

  15. Henning H, Schelbert HR, Rigetti A, et al: Dual myocardial imaging with technetium-99m pyrophosphate and thallium-201 for detecting, localizig and sizing acute myocardial infarction. Am J Cardiol 40:147, 1977.

    Article  PubMed  CAS  Google Scholar 

  16. Zaret BL, DiCola VC, Conabedian RK, et al: Dual radionuclide study of myocardial infarction. Relationships between myocardial uptake to potassium-43 technetium-99m stannous pyrophosphate, regional myocardial blood flow and creatine Phosphokinase depletion. Circulation 53:422, 1976.

    PubMed  CAS  Google Scholar 

  17. Willerson JT, Parkey RW, Stokely EM, et al: Infarct sizing with technetium-99-m stannous pyrophosphate scintigraphy in dogs and man. Relationship between scintigraphy and praecordial mapping estimates of infarct size in patients. Cardiovasc Res 11:291, 1977.

    Article  PubMed  CAS  Google Scholar 

  18. Poliner LR, Buja LM, Parkey RW, et al: Clinic-pathologic findings in 52 patients studied by technetium-99m stannous pyrophosphate myocardial scintigraphy. Circulation 59:257, 1979.

    PubMed  CAS  Google Scholar 

  19. Khaw BA, Gold HK, Leinbach RC, et al: Early imaging of experimental myocardial infarction by intracoronary administration of 1-131 labelled anticardiac myosin (Fab)2 fragments. Circulation 53:1137, 1978.

    Google Scholar 

  20. Pohost GM, Zir LM, Moore RH, et al: Differentiation of transient ischemia from infarcted myocardium by serial imaging after a single dose of thallium 201. Circulation 55:294, 1977.

    PubMed  CAS  Google Scholar 

  21. Freundlieb Ch, Höck A, Vyshak, et al: Myocardial imaging and metabolic studies with (17-123-I)-Iodoheptadecanoic acid. J Nucl Med 21:1043, 1980.

    PubMed  CAS  Google Scholar 

  22. Sobel BE, Weiss ES, Welch MJ, et al: Detection of remote myocardial infarction in patients with positron emission transaxial tomography and intravenous C-11-palmitate. Circulation 55:853, 1977.

    PubMed  CAS  Google Scholar 

  23. Pachinger O, Sochor H, Ogris E, et al: Assessment of the functional result of intracoronary streptokinase therapy in acute myocardial infarction by thallium scintigraphy and metabolic studies. J Nucl Med 23:P 4 (Abstr).

    Google Scholar 

  24. Geltmann EM, Bielle D, Welch MJ, et al: Characterization of nontransmural myocardial infarction by positron emission tomography. Circulation 65:747, 1982.

    Article  Google Scholar 

  25. Schelbert HR, Phelps ME, Hoffman EJ, et al: Regional myocardial perfusion assessed with N-13 labelled ammonia and positron emission computerized axial tomography. Am J Cardiol 43:209, 1979.

    Article  PubMed  CAS  Google Scholar 

  26. Sharpe DN, Botvinick EH, Shames DM, et al: The clinical evaluation of acute myocardial infarction size with 99m technetium pyrophosphate scintigraphy. Circulation 57:307, 1978.

    PubMed  CAS  Google Scholar 

  27. Ritchie JL, Zaret BL, Strauss HW, et al: Myocardial imaging with thallium 201: A multicenter study in patients with angina pectoris or acute myocardial infarction. Am J Cardiol 42:345, 1978.

    Article  PubMed  CAS  Google Scholar 

  28. Niess GS, Logic JR, Russell RO, et al: Usefulness and limitations of thallium-201 myocardial scintigraphy in delineating location and size of prior myocardial infarction. Circulation 59:1010, 1979.

    PubMed  CAS  Google Scholar 

  29. Maddahi J, Ganz W, Geft I, et al: Assessment of efficacy of intracoronary thrombolysis in envolving myocardial infarction by thallium-201 scintigraphy. J Nucl Med 23/94, 1982.

    Google Scholar 

  30. Schofer J, Stritzke P, Kuck KH, et al: Dual intracoronary myocardial scintigraphy site T1-201 and Tc 99m pyrophosphate predicts myocardial salvage immediately after successful intraar. thrombolysis. Circulation 66:II–335, 1982.

    Article  Google Scholar 

  31. Perez-Gonzalez J, Botvinick EH, Dunn R, et al: The late prognostic value of acute scintigraphic measurement of myocardial infarction size. Circulation 66:960, 1982.

    Article  PubMed  CAS  Google Scholar 

  32. Holman LB, Chisholm RJ, Braunwald EW, et al: The prognostic implications of acute myocardial infarct scintigraphy with 99m Tc pyrophosphate. Circulation 57:320, 1978.

    PubMed  CAS  Google Scholar 

  33. Silverman KH, Becker LC, Bulkley BH, et al: Value of early thallium-201 scintigraphy for predicting mortality in patients with acute myocardial infarction. Circulation 61:996, 1980.

    PubMed  CAS  Google Scholar 

  34. Olson HG, Lyons KP, Aronow WS, et al: Follow up technetium-99m stannous pyrophosphate myocardial scintigrams after acute myocardial infarction. Circulation 56:181, 1977.

    PubMed  CAS  Google Scholar 

  35. Bulkley BH, Silverman K, Weisfeldt ML, et al: Pathologic basis of thallium-201 scintigraphic defects in patients with fatal myocardial injury. Circulation 60:785, 1979.

    PubMed  CAS  Google Scholar 

  36. Budinger TF: Physical attributes of single photon tomography. J Nucl Med 21:579, 1980.

    PubMed  CAS  Google Scholar 

  37. Vogel RA, Kirch D, LeFree M, et al: A new method of multiplanar emission tomography using a seven pinhole collimator and an anger scintillation camera. J Nucl Med 19:648, 1978.

    PubMed  CAS  Google Scholar 

  38. Francisco DA, Collins SM, Go RT, et al: Tomographic thallium-201 myocardial perfusion scintigrams after maximal coronary artery vasodilatation with intravenous dipyridamole — comparison of qualitative and quantitative approaches. Circulation 66:370, 1982.

    Article  PubMed  CAS  Google Scholar 

  39. Sochor H, Pachinger O, Ogris E, et al: Imaging performance of thallium 201 pinhole tomography in comparison with planar imaging: value and limitations. In: Höfer R, Bergman H (eds), Radioaktive Isotope in Klinik und Forschung, 15, pp 493, Verlag H. Egermann, Vienna, 1982.

    Google Scholar 

  40. Ritchie JL, Williams DL, Caldwell JH, et al: Seven pinhole emission tomography with thallium 201 in patients with prior myocardial infarction. J Nucl Med 22:107, 1981.

    PubMed  CAS  Google Scholar 

  41. Morrison J, Coromilas J, Munsey D, et al: Correlation of radionuclide estimates of myocardial infarction size and release of creatine kinase-MB in man. Circulation 62:277, 1980.

    PubMed  CAS  Google Scholar 

  42. Tamaki S, Nakajima H, Murakami T, et al: Estimation of infarct size by myocardial emission computed tomography with thallium-201 and its relation to creatine kinase-MB release after myocardial infarction in man. Circulation 66:994, 1982.

    Article  PubMed  CAS  Google Scholar 

  43. Simoons ML, Wijns W, Bela Kumaran K, et al: The effect of intracoronary thrombolysis with streptokinase on myocardial thallium distribution left ventricular function assessed by blood pool scintigraphy. Am J Cardiol 49:973, 1982.

    Article  Google Scholar 

  44. Keyes JW, Jr, Leonard PF, Brody SL, et al: Myocardial infarction quantification in the dog by single photon emission computed tomography. Circulation 58:227, 1978.

    PubMed  CAS  Google Scholar 

  45. Keyes JW, Jr, Brady TJ, Leonard PF, et al: Calculation of viable and infarcted myocardial mass from thallium-201 tomograms. J Nucl Med 22:339, 1981.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Martinus Nijhoff Publishers, Boston

About this chapter

Cite this chapter

Probst, P., Pachinger, O., Sochor, H., Ogris, E. (1983). Detection and Quantification of Acute Myocardial Infarction by Myocardial Scintigraphy. In: Meyer, J., Schweizer, P., Erbel, R. (eds) Advances in Noninvasive Cardiology. Developments in Cardiovascular Medicine, vol 24. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-6720-5_20

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-6720-5_20

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-009-6722-9

  • Online ISBN: 978-94-009-6720-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics