Skip to main content

Broadband Electromagnetic Methods

  • Chapter
  • 83 Accesses

Summary

Recent applications of broadband electromagnetic methods used in exploration geology are covered in this chapter. Historically, electromagnetic detection systems used in mineral exploration efforts were designed to utilise a single frequency or a limited number of discrete frequencies. Application of electromagnetic detection methods in geologically complex environments has created a need for a more complete method of discerning the total geological environment. The objective is to be able to map the total geoelectric section, including resistive as well as conductive units. ‘Broadband’ electromagnetic methods have been developed to meet these needs. Electromagnetic detection systems capable of spanning up to five decades of spectral range are in current use. Recent developments in hardware technology and also in in-field data collection, processing, and sophisticated interpretational analysis are discussed in the chapter. These recent advances have contributed to our ability to resolve details of the three-dimensional distribution of resistivity in the subsurface. Results of both frequency-domain and time-domain surveys are presented.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Best, M. E. and Shammas, B. R. (1978) A general solution for a spherical conductor in a magnetic dipole field. Preprint, Shell Canada Resources Ltd.

    Google Scholar 

  • Braham, B., Haren, R., Lappi, D., Lemaire, H., Payne, D., Raiche, A., Spies, B. and Vozoff, K. (1978) Lecture notes from the US-Australia electromagnetic workshop. Bull. Aust. Soc. Explor. Geophys. 9 (1), 2–33.

    Article  Google Scholar 

  • Buselli, G. and O’Neill, B., (1977) Sirotem: a new portable instrument for multichannel transient electromagnetic measurements. Bull. Aust. Soc. Explor. Geophys. 8 (3), 1–6.

    Article  Google Scholar 

  • Coggon, J. H. (1971) Electromagnetic and electrical modelling by the finite element method. Geophysics 36 (1), 132–155.

    Article  Google Scholar 

  • Crone, J. D. (1966) The development of a new ground EM method for use as a reconnaissance tool. In Mining Geophysics, Vol. 1, Society of Exploration Geophysicists.

    Google Scholar 

  • Crone, J. D. (1973) Model studies with the Shootback method. In Proceedings of the Symposium on Electromagnetic Exploration Methods, University of Toronto.

    Google Scholar 

  • Dey, A. and Morrison, H. F. (1973) Electromagnetic response of two-dimensional inhomogeneities in a dissipative half-space for Turam interpretation. Geophys. Prosp. 21, 340–365.

    Article  Google Scholar 

  • Dey, A. and Morrison, H. F. (1977) Resistivity modelling for arbitrarily shaped three-dimensional structures. Lawrence Berkeley Lab., Preprint LBL-7010.

    Google Scholar 

  • Dey, A. and Ward, S. H. (1970) Inductive sounding of a layered earth with a horizontal magnetic dipole. Geophysics 35 (4), 660–703.

    Article  Google Scholar 

  • Duncan, P. M., Hwang, A., Edwards, R. N., Bailey, R. C. and Garland, G. D. (1980) The development and applications of a wide band electromagnetic sounding system using a pseudo-noise source. Geophysics 45 (8), 1276–1296.

    Article  Google Scholar 

  • Emerson, D. W. (ed.) (1980) The Geophysics of the Elura Orebody: Proceedings of the Elura Symposium, Australian Society of Exploration Geophysicists, Sydney.

    Google Scholar 

  • Frischknecht, F. C. (1967) Fields about an oscillating magnetic dipole over a two-layer earth, and application to ground and airborne electromagnetic surveys. Q. Colo. School Mines 62 (1), 326pp.

    Google Scholar 

  • Gaur, V. K. and Verma, O.P. (1973) Enhancement of electromagnetic anomalies by a conducting overburden II. Geophys. Prosp. 21 (1), 159–184.

    Article  Google Scholar 

  • Gaur, V. K., Verma, O. P. and Gupta, C. P. (1972) Enhancement of electromagnetic anomalies by a conducting overburden. Geophys. Prosp. 20 (3), 580–604.

    Article  Google Scholar 

  • Glenn, W. E. and Ward, S. H. (1976) Statistical evaluation of electrical sounding methods. Part I: Experiment design. Geophysics 41(6A), 1207–1221.

    Article  Google Scholar 

  • Grant, F. S. and West, G. F. (1965) Interpretation Theory in Applied Geophysics, McGraw/Hill, New York.

    Google Scholar 

  • Hohmann, G. W. (1971) Electromagnetic scattering by conductors in the earth near a line source of current. Geophysics 36 (1), 101–131.

    Article  Google Scholar 

  • Hohmann, G. W. (1975) Three-dimensional induced polarization and electromagnetic modelling. Geophysics 40 (2), 309–324.

    Article  Google Scholar 

  • Hohmann, G. W. (1977) Modelling team report, Workshop on electrical methods in geothermal exploration. US Geol. Surv. Grant 14-08-0001-G-359, University of Utah, January 1977.

    Google Scholar 

  • Hohmann, G. W., Nelson, P. H. and Van Voorhis, G. D. (1977) A vector EM system and its field applications. Geophysics 43 (7), 1418–1440.

    Article  Google Scholar 

  • Hood, P. (1977) Mineral exploration trends and developments in 1976. Can. Mining J. 98 (1), 8–47.

    Google Scholar 

  • Jain, B. and Morrison, H. F. (1976) Inductive resistivity survey in Grass Valley, Nevada. Lawrence Berkeley Lab., Progress Report.

    Google Scholar 

  • Lajoie, J. J. (1977) Two selected field examples of EM anomalies in a conductive environment. Geophysics 42 (3), 655–660.

    Article  Google Scholar 

  • Lajoie, J. J. and West, G. F. (1976) The electromagnetic response of a conductive inhomogeneity in a layered earth. Geophysics 41 (6A), 1133–1156.

    Article  Google Scholar 

  • Lamontagne, Y. (1975) Applications of wide-band, time-domain EM measurements in mineral exploration. Unpublished Ph.D. thesis, University of Toronto.

    Google Scholar 

  • Lamontagne, Y. and West, G. F. (1973) A wide-band, time-domain ground EM system. In Proc. Symposium on Electromagnetic Exploration Methods, University of Toronto.

    Google Scholar 

  • Lee, K. H., Pridmore, D. F. and Morrison, H. F. (1981) A hybrid three-dimensional electromagnetic modelling scheme. Geophysics 46(5), 796–805.

    Article  Google Scholar 

  • Lee, T. (1974) Transient electromagnetic response of a sphere in a layered medium. Geophys. Prosp. 23, 492–512.

    Article  Google Scholar 

  • Lodha, G. S. (1977) Time domain and multifrequency electromagnetic responses in mineral properties. Unpublished Ph.D. thesis, University of Toronto, 183 pp.

    Google Scholar 

  • Lodha, G. S. and West, G. F. (1976) The electromagnetic response of a conductive inhomogeneity in a layered earth. Geophysics 41 (6A), 1133–1156.

    Article  Google Scholar 

  • Lowrie, W. and West, G. F. (1965) The effect of a conducting overburden on electromagnetic prospecting measurements. Geophysics 30 (4), 624–632.

    Article  Google Scholar 

  • McNeill, J. D. (1980) Applications of transient electromagnetic techniques. Technical Note TN-7, Geonics, Ltd.

    Google Scholar 

  • Nabighian, M. N. (1971) Quasi-static transient response of a conducting permeable two-layer sphere in a dipolar field. Geophysics 36 (1), 25–37.

    Article  Google Scholar 

  • Nabighian, M. N. (1977) The Newmont EMP methods. In Geophysics applied to detection and delineation of non-energy, non-renewable resources. Report on Grant AER76-80802, National Science Foundation; Dept of Geology and Geophysics, University of Utah.

    Google Scholar 

  • Negi, J. G. (1962) Inhomogeneous cylindrical ore body in presence of a time varying magnetic field. Geophysics 27 (3), 386–392.

    Article  Google Scholar 

  • Palacky, G. J. (1975) Interpretation of input AEM measurements in areas of conductive overburden. Geophysics 40 (3), 490–502.

    Article  Google Scholar 

  • Parry, J. R. and Ward, S. H. (1971) Electromagnetic scattering from cylinders of arbitrary cross-section in a conductive half-space. Geophysics 36 (1), 67–100.

    Article  Google Scholar 

  • Pridmore, D. F. (1978) Electromagnetic scattering of three-dimensional fields by three-dimensional earths. Unpublished Ph.D. thesis, University of Utah.

    Google Scholar 

  • Pridmore, D. F., Ward, S. H. and Motter, J. W. (1979) Broadband electromagnetic measurements over a massive sulfide prospect. Geophysics 44 (10), 1677–1699.

    Article  Google Scholar 

  • Pridmore, D. F., Hohmann, G. W., Ward, S. H. and Sill, W. R. (1981) An investigation of finite-element modeling for electrical and electromagnetic data in three dimensions. Geophysics 46 (7), 1009–1024.

    Article  Google Scholar 

  • Quincy, E. H., Davenport, W. H. and Moore, D. F. (1976) Three-dimensional response maps for a new side-band induction system. IEEE Trans. Geosci. Electr. GE-14(4), 261–269.

    Article  Google Scholar 

  • Quon, C. (1963) Electromagnetic fields of elevated dipoles on a two-layer earth. Unpublished M.Sc. thesis, University of Alberta.

    Google Scholar 

  • Raiche, A. P. and Spies, B. R. (1981) Coincident loop TEM master curves for interpretation of two-layer earths. Geophysics 46 (1), 53–64.

    Article  Google Scholar 

  • Roy, A. (1970) On the effect of overburden on EM anomalies: a review. Geophysics 35 (4), 646–659.

    Article  Google Scholar 

  • Ryu, J., Morrison, H. F. and Ward, S. H. (1970) Electromagnetic fields about a loop source of current. Geophysics 35 (5), 862–896.

    Article  Google Scholar 

  • Sarma, D. G. and Maru, W. M. (1971) A study of some effects of a conducting host rock with a new modelling apparatus. Geophysics 36 (1), 166–183.

    Article  Google Scholar 

  • Scheen, W. L. (1978) EMMMMA, a computer program for three-dimensional modeling of airborne electromagnetic surveys. In Proceedings of Workshop on Modeling of Electrical and Electromagnetic Methods, Lawrence Berkeley Lab., LBL-7053, p. 53.

    Google Scholar 

  • Singh, S. K. (1973) Electromagnetic transient response of a conducting sphere embedded in a conductive medium. Geophysics 38 (5), 864–893.

    Article  Google Scholar 

  • Snyder, D. D. (1975) A programmable digital electrical receiver. Presented at 45th Annual Meeting, Society of Exploration Geophysicists, Denver.

    Google Scholar 

  • Snyder, D. D. (1976) Field tests of a microprocessor-controlled electrical receiver. Presented at 46th Annual Meeting, Society of Exploration Geophysicists, Houston.

    Google Scholar 

  • Spies, B. R. (1976) The transient electromagnetic method in Australia. BMR J. Aust. Geol. Geophys. 1, 23–32.

    Google Scholar 

  • Spies, B. R. (1980) TEM model studies of the Elura deposit, Cobar, New South Wales. BMR J. Aust. Geol. Geophys. 5, 77–85.

    Google Scholar 

  • Spies, B. R. (1982) One-loop and two-loop surveys, Elura deposit, Cobar, N.S.W. Bull. Aust. Soc. Explor. Geophys. (in press).

    Google Scholar 

  • Stoyer, C. H. and Greenfield, R. J. (1976) Numerical solutions of the response of a two-dimensional earth to an oscillating magnetic dipole source. Geophysics 41 (3), 519–520.

    Article  Google Scholar 

  • Swift, Jr, C. M. (1971) Theoretical magnetotelluric and Turam response from two-dimensional inhomogeneities. Geophysics 36 (1), 38–52.

    Article  Google Scholar 

  • Vanyan, L. L. (1967) Electromagnetic Depth Sounding, selected and translated by G. V. Keller, Consultants Bureau, New York, 312 pp.

    Google Scholar 

  • Verma, O. P. (1972) Electromagnetic model experiments, simulating conditions encountered in geophysical prospecting. Ph.D. dissertation, University of Roorkee.

    Google Scholar 

  • Verma, O. P. and Gaur, V. K. (1975) Transformation of electromagnetic anomalies brought about by a conducting host rock. Geophysics 40 (3), 473–489.

    Article  Google Scholar 

  • Vozoff, K. (1971) The effect of overburden on vertical component anomalies in AFMAG and VLF exploration: a computer model study. Geophysics 36 (1), 53–57.

    Article  Google Scholar 

  • Vozoff, K. (1980) Electromagnetic methods in applied geophysics. Geophys. Surv. 4, 9–29.

    Article  Google Scholar 

  • Wait, J. R. (1951) A conducting sphere in a time varying magnetic field. Geophysics 16 (5), 666–672.

    Article  Google Scholar 

  • Wait, J. R. (1952) The cylindrical ore body in the presence of a cable carrying an oscillating current. Geophysics 17 (2), 378–386.

    Article  Google Scholar 

  • Wait, J. R. (1953) Induction by a horizontal magnetic dipole over a conducting homogeneous earth. Trans. Am. Geophys. Union 34, 185–189.

    Google Scholar 

  • Wait, J. R. (1955) Mutual electromagnetic coupling of loops over a homogeneous ground. Geophysics 20 (3), 630–637.

    Article  Google Scholar 

  • Wait, J. R. (1958) Induction by an oscillating magnetic dipole over a two-layer ground. Appl. Sci. Res. Sec. B 7, 73–80.

    Article  Google Scholar 

  • Ward, S. H. (1967) The electromagnetic method. In Mining Geophysics, Vol. 2, Society of Exploration Geophysicists, Tulsa, pp. 224–372.

    Chapter  Google Scholar 

  • Ward, S. H. (1971) Discussion on ‘Evaluation of the measurement of induced electrical polarization with an inductive system’. Geophysics 36 (2), 427–429.

    Article  Google Scholar 

  • Ward, S. H. (1972) Mining geophysics: new techniques and concepts. Am. Mining Congr. J. 58, 58–68.

    Google Scholar 

  • Ward, S. H. (1979) Ground electromagnetic methods and base metals. In Geophysics and Geochemistry in the Search for Metallic Ores, Geol. Surv. Can., Econ. Geol. Rep. 31, pp. 45–62.

    Google Scholar 

  • Ward, S. H., Ryu, J., Glenn, W. E., Hohmann, G. W., Dey, A. and Smith, B. D. (1974a) Electromagnetic methods in conductive terrains. Geoexploration 12, 121–183.

    Article  Google Scholar 

  • Ward, S. H., Pridmore, D. F., Rijo, L. and Glenn, W. E. (1974b) Multispectral electromagnetic exploration for sulfides. Geophysics 39 (5), 666–682.

    Article  Google Scholar 

  • Ward, S. H., Smith, B. D., Glenn, W. E., Rijo, L. and Inman Jr, J. R. (1976) Statistical evaluation of electrical sounding methods. Part II: Applied electromagnetic depth sounding. Geophysics 41 (6A), 1222–1235.

    Article  Google Scholar 

  • Ward, S. H., Campbell, R., Corbett, J. D., Hohmann, G. W., Moss, C. K. and Wright, P. M. (1977) Geophysics applied to detection and delineation of non-energy non-renewable resources. Report on grant AER76-80802, National Science Foundation; Dept of Geology and Geophysics, University of Utah.

    Google Scholar 

  • Whiteley, R. J. (ed.) (1981) Geophysical Case Study of the Woodlawn Orebody, New South Wales, Australia, Pergamon Press, New York, 588 pp.

    Google Scholar 

  • Williams, D. A., Strangl, R. O., Scott, W. J. and Dyck, A. V. (1973) Cavendish test range drilling program. Open file report of the Geological Survey of Canada.

    Google Scholar 

  • Wolf, A. (1946) Electric field of an oscillating dipole over the surface of a two-layer earth. Geophysics 2 (4), 518–534.

    Article  Google Scholar 

  • Won, J. (1980) A wide-band electromagnetic exploration method: some theoretical and experimental results. Geophysics 45 (5), 928–940.

    Article  Google Scholar 

  • Zonge, K. L. (1973) Minicomputer used in mineral exploration, or back-packing a box full of bits into the bush. Presented at the 11th Symposium on Computer Applications in the Mineral Industry, University of Arizona, Tucson.

    Google Scholar 

Further Reading

  • Altin, L. M., Berdichevskii, M. N., Vedrintsev, G. A. and Zagarmistr, A. M. (1966) Dipole Methods for Measuring Earth Conductivity, selected and translated by G. V. Keller, Consultants Bureau, New York, 302 pp.

    Google Scholar 

  • Anderson, W. L. (1977) Marquardt inversion of vertical magnetic field measurements from a grounded wire source. US Geol. Surv. Rep. GD-77-003, NTIS, Springfield, Va.

    Google Scholar 

  • Backus, G. and Gilbert, F. (1970) Uniqueness in the inversion of inaccurate gross earth data. Phil. Trans. R. Soc. London Ser A 266, 123–192.

    Article  Google Scholar 

  • Banos, A. (1966) Dipole Radiation in the Presence of a Conducting Half-Space, Pergamon Press, New York.

    Google Scholar 

  • Bhattacharyya, B. K. (1964) Electromagnetic fields of a small loop antenna on the surface of a polarizable medium. Geophysics 29 (5), 814–831.

    Article  Google Scholar 

  • Bhattacharyya, B. K. and Patra, H. P. (1968) Direct Current Geoelectric Sounding, Elsevier, New York, 135 pp.

    Google Scholar 

  • Dey, A. and Morrison, H. F. (1973) Electromagnetic coupling in frequency-and time-domain induced polarization surveys over a multilayered earth. Geophysics 38 (2), 380–405.

    Article  Google Scholar 

  • Dias, C. A. (1968) A non-grounded method for measuring induced electrical polarization and conductivity. Ph.D. thesis, University of California, Berkeley.

    Google Scholar 

  • Dieter, K., Paterson, N. R. and Grant, F. S. (1969) IP and resistivity type curves for three-dimensional bodies. Geophysics 34, 615–632.

    Article  Google Scholar 

  • Fountain, D. K. (1972) Geophysical case history of disseminated sulfide deposits in British Columbia. Geophysics 31 (1), 142–159.

    Article  Google Scholar 

  • Geoex Pty Ltd (1977) Apparent resistivity time section, Willyama Complex, South Australia. Advertising brochure, Case-Study Series, No. 3.

    Google Scholar 

  • Glenn, W. E., Ryu, J., Ward, S.H., Peeples, W. J. and Phillips, R. J. (1973) Inversion of vertical magnetic dipole data over a layered structure. Geophysics 38 (6), 1109–1129.

    Article  Google Scholar 

  • Harrington, R. F. (1968) Field Computation by Moment Methods, Macmillan, New York, 229 pp.

    Google Scholar 

  • Hohmann, G. W. (1973) Electromagnetic coupling between grounded wires at the surface of a two-layer earth. Geophysics 38 (5), 854–863.

    Article  Google Scholar 

  • Hohmann, G. W., Kintzinger, P. R., Van Voorhis, G. D. and Ward, S. H. (1970) Evaluation of the measurement of induced polarization with an inductive system. Geophysics 35 (5), 901–915.

    Article  Google Scholar 

  • Jackson, D. D. (1972) Interpretation of inaccurate, insufficient and inconsistent data. Geophys. J. R. Astron. Soc. 28, 97–110.

    Google Scholar 

  • Kauffman, A. (1978a) Frequency and transient responses of electromagnetic field created by currents in confined conductors. Geophysics 43, 1002–1010.

    Article  Google Scholar 

  • Kauffman, A. (1978b) Resolving capabilities of the inductive methods of electroprospecting. Geophysics 43, 1392–1398.

    Article  Google Scholar 

  • Keller, G. V. and Frischknecht, F. C. (1966) Electrical Methods in Geophysical Prospecting, Pergamon Press, New York 517 pp.

    Google Scholar 

  • Klein, J. D. and Shuey, R. T. (1978) Nonlinear impedance of mineral-electrolyte interfaces, Parts I and II. Geophysics 43 (6), 1222–1249.

    Article  Google Scholar 

  • Kunetz, G. (1966) Principles of Direct Current Resistivity Prospecting, Geoexploration Monograph Series 1, No. 2, Gebrüder Borntraeger, Berlin.

    Google Scholar 

  • McCracken, K. G. and Buselli, G. (1978) Australian exploration geophysics: current performance and future prospects. Presented at 2nd Circum-Pacific Energy and Minerals Resources Conference, Honolulu.

    Google Scholar 

  • McNeill, J. D. (1980a) Electrical conductivity of soils and rocks. Technical Note TN-5, Geonics, Ltd.

    Google Scholar 

  • McNeill, J. D. (1980b) Electromagnetic terrain conductivity measurement at low induction numbers. Technical Note TN-6, Geonics, Ltd.

    Google Scholar 

  • Madden, T. R. (1971) The resolving power of geoelectric measurements for delineating resistive zones within the crust. In The Structure and Physical Properties of the Earth’s Crust, Ed. J. G. Heacock, American Geophysical Union, pp. 95–105.

    Google Scholar 

  • Meyer, W. H. (1977) Computer modeling of electromagnetic prospecting methods. Ph.D. dissertation, University of California, Berkeley.

    Google Scholar 

  • Millett Jr, F. B. (1967). Electromagnetic coupling of colinear dipoles on a uniform half-space. In Mining Geophysics, Vol. 2, Society of Exploration Geophysicists, Tulsa, pp. 401–419.

    Chapter  Google Scholar 

  • Morrison, H. F., Dolan, W. and Dey, A. (1976) Earth conductivity determinations employing a single superconducting coil. Geophysics 41, 1184–1206.

    Article  Google Scholar 

  • Motter, J. W. (1980) Applications of formal search theory to exploration for non-fuel, non-renewable natural resources. Unpublished MBA thesis, University of Nevada, Reno.

    Google Scholar 

  • Nabighian, M. N. (1979) Quasi-static transient response of a conducting half-space: an approximate representation. Geophysics 44, 1700–1705.

    Article  Google Scholar 

  • Oldenburg, D. W. (1979) One-dimensional inversion of natural source magnetotelluric observations. Geophysics 44, 1218–1244.

    Article  Google Scholar 

  • Parry, J. R. (1969) Integral equation formulations of scattering from two-dimensional inhomogeneities in a conductive earth. Unpublished Ph.D. thesis, University of California, Berkeley.

    Google Scholar 

  • Pelton, W. H. (1977) Interpretation of induced polarization and resistivity data. Unpublished Ph.D. thesis, University of Utah.

    Google Scholar 

  • Quincy, E. A., Davenport, W. H. and Lindsey, T. E. (1974) Preliminary field results on a new transient induction system employing pseudo-noise signals. IEEE Trans. Geosci. Electr. GE12, 123–133.

    Article  Google Scholar 

  • Rijo, J. (1977) Modelling of electric and electromagnetic data. Unpublished Ph.D. thesis, University of Utah.

    Google Scholar 

  • Roy, A. and Apparao, A. (1971) Depth of investigation in direct current methods. Geophysics 36 (5), 943–959.

    Article  Google Scholar 

  • Scott, W. J. and Fraser, D. C. (1973) Drilling of EM anomalies caused by overburden. Can. Inst. Mining Metall. Bull. 66 (735), 72–77.

    Google Scholar 

  • Smith, B. D. and Ward, S. H. (1974) A short note on the computation of polarization ellipse parameters. Geophysics 39 (6), 867–869.

    Article  Google Scholar 

  • Spies, B. R. (1976) The derivation of absolute units in electromagnetic scale modelling. Geophysics 41, 1042–1047.

    Article  Google Scholar 

  • Spies, B. R. (1979) Scale model studies of a transient electromagnetic prospecting system using an interactive mini-computer. IEEE Trans. Geosci. Electr. GE-17, 25–33.

    Article  Google Scholar 

  • Spies, B. R. (1980) Interpretation and design of time domain electromagnetic surveys in areas of conductive overburden. Bull. Aust. Soc. Explor. Geophys. 10 (3), 203–205.

    Article  Google Scholar 

  • Sumner, J. S. (1976) Principles of Induced Polarization for Geophysical Exploration, Elsevier, New York, 277 pp.

    Google Scholar 

  • Sunde, E. D. (1979) Earth Conduction Effects in Transmission Systems, Van Nostrand, New York, 373 pp.

    Google Scholar 

  • Telford, W. M., Geldart, L. B., Sheriff, R. E. and Keys, D. A. (1976) Applied Geophysics, Cambridge University Press, Cambridge, 860 pp.

    Google Scholar 

  • Tripp, A. C., Ward, S. H., Sill, W. R., Swift Jr, C. M. and Petrick, W. R. (1978) Electromagnetic and Schlumberger resistivity in the Roosevelt Hot Springs KGRA. Geophysics 43 (7), 1450–1469.

    Article  Google Scholar 

  • Van Nostrand, R. G. and Cook, K. L. (1966) Interpretation of resistivity data. U.S. Geol. Surv., Prof. Paper 499, 310 pp.

    Google Scholar 

  • Ward, S. H. (1971) Foreword and Introduction. In Special issue on electromagnetic scattering. Geophysics 36 (1), 1–8.

    Article  Google Scholar 

  • Ward, S. H., Parry, W. T., Nash, W. P., Sill, W. R., Cook, K. L., Smith, R. B., Chapman, D. S., Brown, F. H., Whelan, J. A. and Bowman, J. R. (1978) A summary of the geology, geochemistry, and geophysics of the Roosevelt Hot Springs thermal area, Utah. Geophysics 43, 1515–1542.

    Article  Google Scholar 

  • Weidelt, P. (1975) Electromagnetic induction in three-dimensional structures. J. Geophys. 41, 85–109.

    Google Scholar 

  • Wiggins, R. A. (1972) The generalized inverse problem. Rev. of Geophys. Space Phys. 10 (1), 251–286.

    Article  Google Scholar 

  • Zonge, K. L. and Wynn, J. C. (1975) EM coupling, its intrinsic value, its removal, and the cultural coupling problem. Geophysics 40 (5), 831–850.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Applied Science Publishers Ltd

About this chapter

Cite this chapter

Motter, J.W. (1983). Broadband Electromagnetic Methods. In: Fitch, A.A. (eds) Developments in Geophysical Exploration Methods—4. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-6625-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-6625-3_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-009-6627-7

  • Online ISBN: 978-94-009-6625-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics