Skip to main content

Extrapituitary Functions of Thyrotropin-Releasing Hormone

  • Chapter
Hormonal Actions in Non-endocrine Systems

Abstract

Thyrotropin-releasing hormone (TRH) was the first and smallest hypothalamic polypeptide to be isolated, purified, characterized, and synthesized (Vale and Rivier, 1975; Vale et al., 1977); its sequential tripeptide-amino acid structure is L-pyroglutamyl-L-histidyl-L-proline amide (pGlu-His-Pro-NH2). Synthetic TRH has been shown to stimulate in vivo and in vitro secretion of thyroid-stimulating hormones (TSH) from the adenohypophysis in all mammals (including humans). It effects prolactin (PRL) release as well (Brownstein, 1978; Vale and Rivier, 1975; Vale et al., 1977). Competitive radioreceptor TRH binding studies utilizing synthetic tritiated TRH ([3H]-TRH) in pituitary tissues (mouse thyrotropic and rat somatotropic/prolactotropic tumor, as well as normal bovine and rat membrane preparations) reveal high specificity of binding: [3H]-TRH binding is saturable; unlabeled TRH is capable of stoichiometric competition; and the majority of binding sites are localized in the plasma membrane subcellular fraction, which displays an approximate 40-fold increase in [3H]-TRH binding when compared with the total adenohypophyseal homogenate (Burt and Snyder, 1975; Burt and Taylor, 1980; Grant et al., 1973; Labrie et al., 1972, 1978; Poirier et al., 1972). In addition, a large number of synthetic TRH structural analogues have been synthesized and studied in the pituitary (Burt and Snyder, 1975; Burt and Taylor, 1980; Grant et al., 1973; Vale et al., 1973, 1977; Vale and Rivier, 1975; Vale, Rivier and Burgus, 1971). In general, the relative in vivo biological potency (percentage TSH release; percentage PRL release) of these analogues correlates fairly well with their in vitro radioreceptor [3H]-TRH competitive binding capabilities (relative affinities) in pituitary membrane receptors. Potent receptor antagonists, mainly TRH analogues, capable of blocking TRH-stimulated release of TSH have been synthesized (Bowers et al, 1976; Lybeck et al., 1973; Sievertsson et al., 1975).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Atweh, S., Simon, J. R., and Kuhar, M. J. Utilization of sodium-dependent high affinity choline uptake in vitro as a measure of the activity of cholinergic neurons in vivo. Life Sci. 1975; 17:1535–1544.

    PubMed  CAS  Google Scholar 

  • Barbeau, A., Gonce, M., and Kastin, A. J. (1976): Neurologically active peptides. In The Neuropeptides: Pharmacology Biochemistry and Behavior, Vol. 5, suppl. 5, pp. 159–163.

    CAS  Google Scholar 

  • Barker, J. L., Neale, J. H., Smith, T. G., Jr., and MacDonald, R. L. Opiate peptide modulation of amino acid responses suggests a novel form of neuronal communication. Science 1978; 199:1451–1453.

    PubMed  CAS  Google Scholar 

  • Bergland, R., Blume, H., Hamilton, A., Monica, P., and Paterson, R. Adrenocorticotropic hormone may be transported directly from the pituitary to the brain. Science 1980; 210:541–543.

    PubMed  CAS  Google Scholar 

  • Bissette, G., Nemeroff, C. B., Loosen, P. T., Prange, A. J., Jr., and Lipton, M. A. (1976): Comparison of the analeptic potency of TRH, ACTH 4–10, LHRH, and related peptides. In The Neuropeptides: Pharmacology Biochemistry and Behavior, Vol., 5, suppl. 1, pp. 135–138.

    CAS  Google Scholar 

  • Bloom, F., Segal, D., Ling, N., and Guillemin, R. Endorphins: Profound behavioral effects in rats suggest new etiological factors in mental illness. Science 1976; 194:630–632.

    PubMed  CAS  Google Scholar 

  • Bowers, C. Y., Sievertsson, H., Chang, J., Stewart, J., Castensson, S., Bjorkman, S., Chang, K., and Folkers, K. (1976): TRH analog antagonists. In J. Robbins, L. E. Braverman, F. J. Ebling, and I. W. Henderson (Eds.), Thyroid Research: Proceedings of the Seventh International Thyroid Conference—Boston, Massachusetts, June 9–13, 1975. New York: American Elsevier Publishing Co., Inc.

    Google Scholar 

  • Bradley, P. B. (1958): The central action of certain drugs in relation to the reticular formation of the brain. In H. H. Jasper, L. D. Proctor, R. S. Knighton, W. C. Noshay, and R. T. Costello (Eds.), Reticular Formation of the Brain. Boston: Little, Brown & Co.

    Google Scholar 

  • Breese, G. R., Cott, J. M., Cooper, B. R., Prange, A. J., Jr., and Lipton, M. A. Antagonism of ethanol narcosis by thyrotropin releasing hormone. Life Sci. 1974; 14:1053–1063.

    PubMed  CAS  Google Scholar 

  • Breese, G. R., Cott, J. M., Cooper, B. R., Prange, A. J., Jr., Lipton, M. A., and Plotnikoff, N. P. Effects of thyrotropin-releasing hormone (TRH) on the actions of pentobarbital and other centrally acting drugs. T. J. Pharmacol Exper. Ther. 1975; 193:11–22.

    CAS  Google Scholar 

  • Breese, G. R., Cott, J. M., Cooper, B. R., Prange, A. J., Plotnikoff, N. P., and Lipton, M. A. Interaction of thyrotropin releasing hormone with various centrally-acting depressants. Pharmacologist 1974; 16:296. (abstract)

    Google Scholar 

  • Browne, R. G., and Segal, D. S. Alterations in β-endorphin-induced locomotor activity in morphine-tolerant rats. Neuropharmacology 1980; 19:619–621.

    PubMed  CAS  Google Scholar 

  • Brownstein, M. J. (1978): Are hypothalamic hormones central neuro-transmitters? In J. Hughes (Ed.), Centrally Acting Peptides. Baltimore: University Park Press.

    Google Scholar 

  • Brownstein, J. J., Palkovits, M., Saavedra, J. M., Bassiri, R. M., and Utiger, R. D. Thyrotropin-releasing hormone in specific nuclei of rat brain. Science 1974; 185:267–269.

    PubMed  CAS  Google Scholar 

  • Burt, D. R., and Snyder, S. H. Thyrotropin releasing hormone (TRH): Apparent receptor binding in rat brain membranes. Brain Res. 1975; 93:309–328.

    PubMed  CAS  Google Scholar 

  • Burt, D. R., and Taylor, R. L. Binding sites for thyrotropin-releasing hormone in sheep nucleus accumbens resemble pituitary receptors. Endocrinology 1980; 106:1416–1423.

    PubMed  CAS  Google Scholar 

  • Chang, J., Fong, B. T. W., Pert, A., and Pert, C. B. Opiate receptor affinities and behavioral effects of enkephalin: Structure-activity relationships of ten synthetic peptide analogues. Life Sci. 1976; 18:1473–1482.

    PubMed  CAS  Google Scholar 

  • Cohn, M. L., Conn, ML, Krzysik, B. A., and Taylor, F. H. (1976): Regulation of behavioral events by thyrotropin releasing factor and cyclic AMP. In The Neuropeptides Pharmacology Biochemistry and Behavior, Vol. 5, suppl. 1, pp. 129–133.

    CAS  Google Scholar 

  • Cooper, J. R., Bloom, F E., and Roth, R. H. (1978): The Biochemical Basis of Neuropharmacology, New York: Oxford University Press.

    Google Scholar 

  • Cotman, C. W., and Taylor, D. Isolation and structural studies on synaptic complexes from rat brain. J. Cell Biol. 1972; 55:696–711.

    PubMed  CAS  Google Scholar 

  • Cotman, C. W., Banker, G., Churchill, L., and Taylor, D. Isolation of post-synaptic densities from rat brain. J. Cell Biol. 1974; 63:441–455.

    PubMed  CAS  Google Scholar 

  • Cott, J., and Engel, J. Antagonism of the analeptic activity of thyrotropin-releasing hormone (TRH) by agents which enhance GABA transmission. Psychopharmacology 1977; 52:145–149.

    PubMed  CAS  Google Scholar 

  • Creese, I., and Snyder, S. H. Receptor binding and pharmacological activity of opiates in the guinea-pig intestine. J. Pharmacol. Exper. Ther. 1975; 194:205–219.

    CAS  Google Scholar 

  • Crowley, T. J., and Hydinger, M. (1976): MIF, TRH, and simian social and motor behavior. In The Neuropeptides: Pharmacology Biochemistry and Behavior, Vol. 5, suppl. 1, pp. 79–87.

    CAS  Google Scholar 

  • Crowley, T. J., and Hydinger, M. Comparison of thyrotropin-releasing hormone with melanocyte-stimulating-hormone-release-inhibiting factor as pentobarbital antagonists in monkeys. Psychopharmacology 1977; 53:205–206.

    PubMed  CAS  Google Scholar 

  • De Meyts, P. (1976): The negative cooperativity of insulin receptors: A model for the regulation of hormone recognition by target cells. In Viruses, Antigens and Antibodies, Polypeptide Hormones, and Small Molecules. New York: Raven Press.

    Google Scholar 

  • De Robertis, E. Ultrastructure and cytochemistry of the synapse: Isolation and nature of receptors in the central nervous system. Adv. Cyto-pharmacology 1971; 1:291–300.

    Google Scholar 

  • De Wied, D. (1974): Pituitary adrenal system hormones and behaviour. In F. O. Schmitt and F. G. Worden (Eds.), The Neurosciences: Third Study Program. Cambridge, Mass.: MIT Press.

    Google Scholar 

  • De Wied, D. (1978): Behavioural effects of neuropeptides related to β-LPH. In J. Hughes (Ed.), Centrally Acting Peptides. Baltimore: University Park Press.

    Google Scholar 

  • Dyer, R. G., and Dyball, R. E. J. Evidence for a direct effect of LRF and TRF on single unit activity in the rostral hypothalamus. Nature 1974; 252:486–488.

    PubMed  CAS  Google Scholar 

  • Ehrensing, R. H., and Kastin, A. J. (1976): Clinical investigations for emotional effects of neuropeptide hormones. In The Neuropeptides: Pharmacology Biochemistry and Behavior, Vol. 5, suppl. 1, pp. 89–93.

    CAS  Google Scholar 

  • Elliott, K. A. C., Swank, R. L., and Henderson, N. Effects of anesthetics and convulsants on acetylcholine content of the brain. Am. J. Physiol. 1950; 162:469–474.

    PubMed  CAS  Google Scholar 

  • Eskay, R. L., Oliver, C., Warberg, J., and Porter, J. C. Inhibition of degradation and measurement of immuno-reactive thyrotropin-releasing hormone in rat blood plasma. Endocrinology 1976; 98:269–277.

    PubMed  CAS  Google Scholar 

  • Essman, E. J., and Essman, W. B. Synaptosomal GABA uptake and receptor binding: Effects of a convulsion. Brain Res. Bull. 1980; 5(suppl. 2): 209–211.

    CAS  Google Scholar 

  • Essman, W. B., and Essman, S. G. (1977): Amine regulation of protein synthesis in retrograde amnesia. In J. M. R. Delgado and F. DeFeudis (Eds.), Behavioral Neurochemistry. New York: Spectrum Publishing.

    Google Scholar 

  • Ferris, S. H., Sathananthan, G., Gershon, S., Clark, C., and Moshinsky, J. (1976): Cognitive effects of ACTH 4-10 in the elderly. In The Neuropeptides: Pharmacology Biochemistry and Behavior, Vol. 5, suppl. 1, pp. 73–78.

    CAS  Google Scholar 

  • Flood, J. F., Jarvik, M. E., Bennett, E. L., and Orme, A. E. (1976): Effects of ACTH peptide fragments on memory formation. In The Neuro-peptides: Pharmacology Biochemistry and Behavior, Vol. 5, suppl. 1, pp. 41–51.

    CAS  Google Scholar 

  • French, J. D., and Magoun, H. W. Effects of chronic lesions in central cephalic brain stem of monkeys. Arch. Neurol. Psychiat. 1952; 68:591–604.

    CAS  Google Scholar 

  • Fuxe, K. The distribution of monoamine terminals in the central nervous system. Acta Physiol Scand. 1965; 64(suppl. 247):37–120.

    Google Scholar 

  • Giarman, N. J., and Pepeu, G. Drug-induced changes in brain acetylcholine. Br. J. of Pharmacol. Chemother. 1962; 19:226–234.

    CAS  Google Scholar 

  • Gintzler, A. R. Endorphin-mediated increases in pain threshold during pregnancy. Science 1980; 210:193–195.

    PubMed  CAS  Google Scholar 

  • Gold, P. W., Goodwin, F. K., Post, R. M., and Robertson, G. L. Vasopressin function in depression and mania. Psychopharmacol. Bull. 1981; 17:7–9.

    PubMed  CAS  Google Scholar 

  • Goldstein, A. Opioid peptides (endorphins) in pituitary and brain. Science 1976; 193:1081–1086.

    PubMed  CAS  Google Scholar 

  • Goldstein, A., Tachibana, S., Lowney, L. I., Hunkapiller, M., and Hood, L. Dynorphin— (1–13), an extraordinarily potent opioid peptide. Proc. Nat. Acad. Sci. U.S.A. 1979; 76:6666–6670.

    CAS  Google Scholar 

  • Grant, G., Vale, W., and Guillemin, R. Characteristics of the pituitary binding sites for thyrotropin-releasing factor. Endocrinology 1973; 92:1629–1633.

    PubMed  CAS  Google Scholar 

  • Green, A. R., and Grahame-Smith, D. G. TRH potentiates behavioural changes following increased brain 5-hydroxytryptamine accumulation in rats. Nature 1974; 251:524–526.

    PubMed  CAS  Google Scholar 

  • Green, J. D. (1960): The hippocampus. In J. Field, H. W. Magoun, and V. E. Hall (Eds.), Handbook of Physiology, Vol. 2, Neurophysiology. Washington, D.C.: American Physiological Society.

    Google Scholar 

  • Green, J. D., and Arduini, A. A. Hippocampal electrical activity in arousal. J. Neurophys. 1954; 17:543–557.

    Google Scholar 

  • Guillemin, R. Peptides in the brain: The new endocrinology of the neuron. Science 1978; 202:390–402.

    PubMed  CAS  Google Scholar 

  • Guillemin, R., Ling, N., and Burgus, R. (1976): Endorphines, peptides, d’origine hypothalamique et neurohypophysaire a activité morphinomimétique. Isolement et structure moléculaire de I’ α-endorphine. Comptes Rendus Hebdomadaires des séances de l’ Academié des Sciences 282(série D):783–785.

    CAS  Google Scholar 

  • Haigler, H. J., and Spring, D. D. A comparison of the analgesic and behavioral effects of [D-Ala2] metenkephalinamide and morphine in the mesencephalic reticular formation of rats. Life Sci. 1978; 23:1229–1239.

    PubMed  CAS  Google Scholar 

  • Harris, G. W., Reed, M., and Fawcett, C. P. Hypothalamic releasing factors and the control of anterior pituitary function. Br. Med. Bull 1966; 22:266–272.

    PubMed  CAS  Google Scholar 

  • Heal, D. J., and Green, A. R. Administration of thyrotropin releasing hormone (TRH) to rats releases dopamine in n. accumbens but not n. caudatus. Neuropharmacology 1979; 18:23–31.

    PubMed  CAS  Google Scholar 

  • Hirsch, M. D. Thyrotropin releasing hormone modulation of barbiturate anesthesia. The Soc. for Neuroscience 1982; 8(1):286. (abstract)

    Google Scholar 

  • Ho, W. K. K., Wen, H. L., and Ling, N. Beta-endorphine-like immunoactivity in the plasma of heroin addicts and normal subjects. Neuropharmacology 1980; 19:117–120.

    PubMed  CAS  Google Scholar 

  • Hökfelt, T., Fuxe, K., Johansson, O., Jeffcoate, S., and White, N. Distribution of thyrotropin-releasing hormone (TRH) in the central nervous system as revealed with immunohistochemistry. Eur. J. Pharmacol. 1975; 34:389–392.

    PubMed  Google Scholar 

  • Holaday, J. W., Tseng, L.F., Loh, H. H., and Li, C. H. Thyrotropin releasing hormone antagonizes ö endorphin hypothermia and catalepsy. Life Sci. 1978; 22:1537–1544.

    PubMed  CAS  Google Scholar 

  • Hollister, L. E. (1973): Clinical Use of Psychotherapeutic Drugs (3rd printing). Springfield, Charles C Thomas.

    Google Scholar 

  • Hollister, L. E., Kanter, S. L., and Clyde, D. J. Studies of prolonged-action medication. III. Pentobarbital sodium in prolonged-action form compared with conventional capsules: Serum levels of drugs and clinical effects following acute doses. Clin. Pharmacol. Ther. 1963; 4:612–618.

    PubMed  CAS  Google Scholar 

  • Hughes, J. Isolation of an endogenous compound from the brain with pharmacological properties similar to morphine. Brain Res. 1975; 88:295–308.

    PubMed  CAS  Google Scholar 

  • ei]Hughes, J. (Ed.) (1978): Centrally Acting Peptides. Baltimore: University Park Press.

    Google Scholar 

  • Hughes, J., Smith, T. W., Kosterlitz, H. W., Fothergill, L. A., Morgan, B. A., and Morris, H. R. Identification of two related pentapeptides from the brain with potent opiate agonist activity. Nature 1975; 258:577–579.

    PubMed  CAS  Google Scholar 

  • Huidobro-Toro, J. P., Scotti de Carolis, A., and Longo, V. G. Action of two hypothalamic factors (TRH, MIF) and of angiotensin II on the behavioral effects of L-Dopa and 5-hydroxytryptophan in mice. Pharmacol. Biochem. Behav. 1974; 2:105–109.

    PubMed  CAS  Google Scholar 

  • Isräel, M., and Whittaker, V. P., The isolation of mossy fibre endings from the granular layer of the cerebellar cortex. Experientia 1965; 21:325–326.

    PubMed  Google Scholar 

  • Jacquet, Y. F., Klee, W. A., and Smyth, D. G. β-endorphin: Modulation of acute tolerance and antagonism by endogeneous brain systems. Brain Res. 1978; 156:396–401.

    PubMed  CAS  Google Scholar 

  • Jacquet, Y. F., and Marks, N. The C-fragment of β-lipotropin: An endogenous neuroleptic or antipsychotogen? Science 1976; 194:632–635.

    PubMed  CAS  Google Scholar 

  • Jessell, T. M., and Richards, C. D. Barbiturate potentiation of hippocampal i.p.s.p.s. is not mediated by blockage of GABA uptake. J. Physiol. 1977; 269:42P–44P. (abstract)

    PubMed  CAS  Google Scholar 

  • Kalivas, P. W., and Horita, A. Thyrotropin-releasing hormone: Central site of action in antagonism of pentobarbital narcosis. Nature 1979; 278:461–463.

    PubMed  CAS  Google Scholar 

  • Kalivas, P. W., and Horita, A. Thyrotropin-releasing hormone: Neurogenesis of actions in the pentobarbital narcotized rat. J. Pharmacol Exper. Ther. 1980; 212:203–210.

    CAS  Google Scholar 

  • Kato, R., Chiesara, E., and Frontino, G. Induced increase of meprobamate metabolism in rats pretreated with phenobarbital or phenaglycodol in relation to age. Experientia 1961; 17:520–521.

    PubMed  CAS  Google Scholar 

  • Katz, R. J. Behavioral effects of dynorphine—A novel opioid neuropeptide. Neuropharmacology 1980; 19:801–803.

    PubMed  CAS  Google Scholar 

  • Keller, H. H., Bartholini, G., and Pletscher, A. Enhancement of cerebral noradrenaline turnover by thyrotropin-releasing hormone. Nature 1974; 248:528–529.

    PubMed  CAS  Google Scholar 

  • Kosterlitz, H. W., and Waterfield, A. A. In vitro models in the study of structure-activity relationships of narcotic analgesics. Ann. Rev. Pharmacol 1975; 15:29–47.

    PubMed  CAS  Google Scholar 

  • Kubek, M., Wilber, J. F., and George, J. M. The distribution and concentration of thyrotropin-releasing hormone in discrete human hypothalamic nuclei. Endocrinology 1979; 105:537–540.

    PubMed  CAS  Google Scholar 

  • Kulig, B. M. The effects of thyrotropin-releasing hormone on the behaviour of rats pretreated with α-methyltyrosine. Neuropharmacology 1975; 14:489–492.

    PubMed  CAS  Google Scholar 

  • Labrie, F., Barden, N., Poirier, G., and De Lean, A. Binding of thyrotropin-releasing hormone to plasma membranes of bovine anterior pituitary gland. Proc. Nat. Acad. Sci. 1972; 69(l):283–287.

    PubMed  CAS  Google Scholar 

  • Labrie, F., De Lean, A., Lagrace, L., Drouin, J., Ferland, L., Beaulieu, M., and Morin, O. (1978): Interactions of TRH, LH-RH, and somatostatin in the anterior pituitary gland. In L. Birnbaumer and B. W. O’Mallery (Eds.), Receptors and Hormone Action. New York: Academic Press.

    Google Scholar 

  • Lazarus, L. H., Ling, N., and Guillemin, R. β-lipotropin as a prohormone for the morphinomimetic peptides endorphins and enkephalins. Proc. Nat Acad. Sci., U.S.A. 1976; 73:2156–2159.

    CAS  Google Scholar 

  • Leppäluoto, J., Koivusalo, F., and Kraama, R. Thyrotropin-releasing factor: Distribution in neural and gastro-intestinal tissues. Acta Physiol. Scand. 1978; 104:175–179.

    PubMed  Google Scholar 

  • Lewis, P. R., and Henderson, Z. Tracing putative cholinergic pathways by a dual cytochemical technique. Brain Res. 1980; 196:489–493.

    PubMed  CAS  Google Scholar 

  • Lewis, R. V., Stern, A. S., Kimura, S., Rossier, J., Brink, L., Gerber, L. D., Stein, S., and Udenfriend, S. (1980): Opioid peptides and precursors in the adrenal medulla. In E. Costa and M. Trabucchi (Eds.), In Neural Peptides and Neuronal Communication, Advances in Biochemical Psychopharmacology, Vol. 22. New York: Raven Press, pp. 167–179.

    Google Scholar 

  • Lindsley, D. B., Schreiner, L. H., Knowles, W. B., and Magoun, H. W. Behavioral and EEG changes following chronic brain stem lesions in the cat. Electroencephal. Clin. Neurophys. 1950; 2:483–498.

    CAS  Google Scholar 

  • Livingston, R. B. (1959): Central control of receptors and sensory transmission systems. In J. Field, H. W. Magoun, and V. E. Hall (Eds.), Handbook of Physiology, Vol. 1, Neurophysiology. Baltimore: Williams & Wilkins.

    Google Scholar 

  • Lotti, V. J., Yarbrough, G. G., and Clineschmidt, B. V. Investigations on the interaction of thyrotropin-releasing hormone (TRH) and MK-771 with central noradrenergic mechanisms. Psychopharmacology 1980; 70:145–148.

    PubMed  CAS  Google Scholar 

  • Lybeck, H., Leppäluoto, J., Virkkunen, P., Schafer, D., Carlsson, L., and Mulder, J. Suppression of TRH-mediated thyroidal release of 131I by a synthetic analog. Neuroendocrinology (Short Commun.) 1973; 12:366–370.

    CAS  Google Scholar 

  • Malthe-Sørenssen, D., Wood, P. L., Cheney, D. L., and Costa, E. Modulation of the turnover rate of acetylcholine in rat brain by intraventricular injections of thyrotropin-releasing hormone, somatostatin, neurotensin and angiotension II. J. Neurochemistry 1978; 31:685–691.

    Google Scholar 

  • Martin, J. B., Renaud, L. P., and Brazeau, P. Hypothalamic peptides: New evidence for “peptidergic” pathways in the C.N.S. Lancet 1975; 2:393–395.

    PubMed  CAS  Google Scholar 

  • Miller, L. J., Harris, L. C., van Riezen, H., and Kastin, A. J. (1976): Neuro-heptapeptide influence on attention and memory in man. In The Neuropeptides Pharmacology Biochemistry and Behavior, Vol. 5, suppl. 1, pp. 17–21.

    CAS  Google Scholar 

  • Mortimer, C. H., McNeilly, A. S., Fisher, R. A., Murray, M. A. F., and Besser, G. M. Gonadotrophin-releasing hormone therapy in hypogonadal males with hypothalamic or pituitary dysfunction. Br. Med. J. 1974; 4:617–621.

    PubMed  CAS  Google Scholar 

  • Moruzzi, G., and Magoun, H. W. Brain stem reticular formation and activation of the EEG. Electroenceph. Clin. Neurophys. 1949; 1:455–473.

    CAS  Google Scholar 

  • Nauta, W. J. H. Hypothalamic regulation of sleep in rats. An experimental study. J. Neurophys. 1946; 9:285–316.

    CAS  Google Scholar 

  • Ogawa, N., Yamawaki, Y., Kuroda, H., Ofuji, T., Itoga, E., and Kito, S. Discrete regional distributions of thyrotropin releasing hormone (TRH) receptor binding in monkey central nervous system. Brain Res. 1981; 205:169–174.

    PubMed  CAS  Google Scholar 

  • Papez, J. W. A proposed mechanism of emotion. Arch. Neurol. Psychiatry 1937; 38:725–744.

    Google Scholar 

  • Pearse, A. G. E. (1978): Diffuse neuroendocrine system: Peptides common to brain and intestine and their relationship to the APUD concept. In J. Hughes (Ed.), Centrally Acting Peptides. Baltimore: University Park Press.

    Google Scholar 

  • Pert, A., Simantov, R., and Snyder, S. H. A morphine-like factor in mammalian brain: Analgesic activity in rats. Brain Res. 1977; 136:523–533.

    PubMed  CAS  Google Scholar 

  • Phillis, J. W. Acetylcholine release from the cerebral cortex: Its role in cortical arousal. Brain Res. 1968; 7:378–389.

    PubMed  CAS  Google Scholar 

  • Phillis, J. W. (1970): The Pharmacology of Synapses. Oxford: Pergamon Press.

    Google Scholar 

  • Plotnikoff, N. P., Prange, A. J., Jr., Breese, G. R., Anderson, M. S., and Wilson, I. C. Thyrotropin releasing hormone: Enhancement of dopa activity by a hypothalamic hormone. Science 1972; 178:417–418.

    PubMed  CAS  Google Scholar 

  • Poirier, G., Labrie, F., Barden, N., and Lemaire, S. Thyrotropin-releasing hormone receptor: Its partial purification from bovine anterior pituitary gland and its close association with adenyl cyclase. FEBS Lett. 1972; 20(3):283–286.

    PubMed  CAS  Google Scholar 

  • Pollard, H., Llorens-Cortes, C., and Schwartz, J. C. Enkephalin receptors on dopaminergic neurons in rat striatum. Nature 1977; 268:745–747.

    PubMed  CAS  Google Scholar 

  • Pomeranz, B. Brain’s opiates at work in acupuncture? New Scientist 1977; 73:12–13.

    Google Scholar 

  • Prange, A. J., Jr., Breese, G. R., Cott, J. M., Martin, B. R., Cooper, B. R., Wilson, I. C., and Plotnikoff, N. P. Thyrotropin releasing hormone: Antagonism of pentobarbital in rodents. Life Sci. 1974; 14:447–455.

    PubMed  CAS  Google Scholar 

  • Prange, A. J., Jr., Breese, G. R., Jahnke, G. D., Martin, B. R., Cooper, B. R., Cott, J. M., Wilson, I. C., Alltop, L. B., Lipton, M. A., Bissette, G., Nemeroff, C. B., and Loosen, P. T. Modification of pentobarbital effects by natural and synthetic polypeptides: Dissociation of brain and pituitary effects. Life Sci. 1975; 16:1907–1914.

    PubMed  CAS  Google Scholar 

  • Prange, A. J., Jr., Nemeroff, C. B., Lipton, M. A., Breese, G. R., and Wilson, I. C. (1978a): Peptides and the central nervous system. In L. L. Iversen, S. D. Iversen, and S. H. Snyder (Eds.), Handbook of Psycho-pharmacology Biology of Mood and Antianxiety Drugs. New York: Plenum Press.

    Google Scholar 

  • Prange, A. J., Jr., Nemeroff, C. B., and Loosen, P. T. (1978b): Behavioral effects of hypothalamic peptides. In J. Hughes (Ed.), Centrally Acting Peptides Baltimore: University Park Press.

    Google Scholar 

  • Prange, A. J., Jr., and Wilson, I. C. Thyrotropin releasing hormone (TRH) for the immediate relief of depression: A preliminary report. Psychopharmacologia 1972; 26(suppl.):82. (abstract)

    Google Scholar 

  • Ranson, S. W. Somnolence caused by hypothalamic lesions in the monkey. Arch. Neurol. Psychiat 1939; 41:1–23.

    Google Scholar 

  • Rees, H. D., Verhoef, J., Witter, A., Gispen, W. H., and De Wied, D. Autoradiographic studies with a behaviorally potent 3H-ACTH4–9 analog in the brain after intraventricular injection in rats. Brain Res. Bull. 1980; 5:509–514.

    PubMed  CAS  Google Scholar 

  • Renaud, L. P., and Martin, J. B. Thyrotropin releasing hormone (TRH): Depressant action on central neuronal activity. Brain Res. 1975; 86:150–154.

    PubMed  CAS  Google Scholar 

  • Renaud, L. P., Martin, J. B., and Brazeau, P. Depressant action of TRH, LH-RH and somatostatin on activity of central neurones. Nature 1975; 255:233–235.

    PubMed  CAS  Google Scholar 

  • Renaud, L. P., Martin, J. B., and Brazeau, P. (1976): Hypothalamic releasing factors: Physiological evidence for a regulatory action on central neurons and pathways for their distribution in brain. In The Neuropeptides: Pharmacology Biochemistry and Behavior, Vol. 5, suppl. 1, pp. 171–178.

    CAS  Google Scholar 

  • Richter, D., and Crossland, J. Variation in acetylcholine content of the brain with physiological state. Am. J. Physiol. 1949; 159:247–255.

    PubMed  CAS  Google Scholar 

  • Rigter, H. Attenuation of amnesia in rats by systematically administered enkephalins. Science 1978; 200:83–85.

    PubMed  CAS  Google Scholar 

  • Rigter, H., Janssens-Elbertse, R., and van Riezen, H. (1976): Reversal of amnesia by an orally active ACTH 4–9 analog (Org 2766). In The Neuropeptides: Pharmacology Biochemistry and Behavior, Vol. 5, suppl. 1, pp. 53–58.

    CAS  Google Scholar 

  • Roubicek, J., Krebs, E., and Poeldinger, W. Classification of endorphins/ enkephalins in brain physiology and pathology (based on EEG and clinical study of synthetically-modified methionine-enkephalin). Progr. Neuropsychopharmacol. 1980; 4:507–518.

    CAS  Google Scholar 

  • Sandman, C. A., Miller, L. H., and Kastin, A. J. (1976): Proceedings of the bicentennial neuropeptide conference. In The Neuropeptides: Pharmacology Biochemistry and Behavior, Vol. 5, suppl. 1, p. 1.

    Google Scholar 

  • Schaeffer, J. M., Axelrod, J., and Brownstein, M. J. Regional differences in dopamine-mediated release of TRH-like material from synaptosomes. Brain Res. 1977; 138:571–574.

    PubMed  CAS  Google Scholar 

  • Shute, C. C. D., and Lewis, P. R. Cholinesterase containing systems of the brain of the rat. Nature 1963; 199:1160–1164.

    PubMed  CAS  Google Scholar 

  • Shute, C. C. D., and Lewis, P. R. The ascending cholinergic reticular system: Neocortical, olfactory and subcortical projections. Brain 1967; 90:467–520.

    Google Scholar 

  • Sievertsson, H., Castensson, S., Andersson, K., Björkman, S., and Bowers, C. Y. Thyrotropin and prolactin inhibitory studies by compounds related to the thyrotropin releasing hormone. Biochem. Biophys. Res. Commun. 1975; 66(4):1401–1407.

    PubMed  CAS  Google Scholar 

  • Simantov, R., and Snyder, S. H. Morphine-like peptides in mammalian brain: Isolation, structure elucidation and interactions with the opiate receptor. Proc. Nat. Acad. Sci., U.S.A. 1976; 73:2515–2519.

    CAS  Google Scholar 

  • Simantov, R., and Snyder, S. H. Opiate receptor binding in the pituitary gland. Brain Res. 1977; 124:178–184.

    PubMed  CAS  Google Scholar 

  • Simon, J. R., and Kuhar, M. J. Impulse-flow regulation of high affinity choline uptake in brain cholinergic nerve terminals. Nature 1975; 255:162–163.

    PubMed  CAS  Google Scholar 

  • Simon, J. R., Atweh, S., and Kuhar, M. J. Sodium-dependent high affinity choline uptake: A regulatory step in the synthesis of acetylcholine. J. Neurochemistry 1976; 26:909–922.

    CAS  Google Scholar 

  • Snyder, S. H., Uhl, G. R., and Kuhar, M. J. (1978): Comparative features of enkephalin and neurotensin in the mammalian central nervous system. In J. Hughes (Ed.), Centrally Acting Peptides. Baltimore: University Park Press.

    Google Scholar 

  • Spindel, E., and Wurtman, R. J. TRH immunoreactivity in rat brain regions, spinal cord and pancreas: Validation by high-pressure liquid chromotography and thin-layer chromatography. Brain Res. 1980; 201:279–288.

    PubMed  CAS  Google Scholar 

  • Stohs, S. J., Al-Turk, W. A., and Hassing, J. M. Altered drug metabolism in hepatic and extrahepatic tissues in mice as a function of age. Age 1980; 3:88–92.

    CAS  Google Scholar 

  • Streicher, E., and Garbus, J. The effect of age and sex on the duration of hexobarbital anesthesia in rats. J. Gerontology 1955; 10:441–444.

    CAS  Google Scholar 

  • Stumpf, W. E., and Sar, M. 3H-TRH and 3H-proline radioactivity localization in pituitary and hypothalamus. Fed. Proc. 1973; 32(1):211. (abstract)

    Google Scholar 

  • Swank, R. L., and Watson, C. W. Effects of barbiturates and anesthesia on spontaneous electrical activity of dog brain. J. Neurophysiology 1949; 12:137–148.

    CAS  Google Scholar 

  • Tabakoff, B., Yanai, J., and Ritzmann, R. F. Brain noradrenergic systems as a prerequisite for developing tolerance to barbiturates. Science 1978; 200:449–451.

    PubMed  CAS  Google Scholar 

  • Tobias, J. M., Lipton, M. A., and Lepinat, A. A. Effect of anesthetics and convulsants on brain acetylcholine content. Soc. Exp. Biol. Med. 1946; 61:51–54.

    CAS  Google Scholar 

  • Urban, I., and DeWied, D. Changes in excitability of the theta activity generating substrate by AHTH 4–10 in the rat. Exp. Brain Res. 1976; 24:325–334.

    PubMed  CAS  Google Scholar 

  • Vale, W., and Rivier, C. (1975): Hypothalamic hypophysiotropic hormones. In L. L. Iversen, S. D. Iversen, and S. H. Snyder (Eds.), Handbook of Psychopharmacology, Vol. 5. New York: Plenum Press.

    Google Scholar 

  • Vale, W., Grant, G., and Guillemin, R. (1973): Chemistry of the hypothalamic releasing factors—Studies on structure-function relationships. In W. F. Ganong and L. Martini (Eds.), Frontiers in Neuroendocrinology, 1973. New York: Oxford University Press.

    Google Scholar 

  • Vale, W., Rivier, C., and Brown, M. Regulatory peptides of the hypothalamus. Ann. Rev. Physiol 1977; 39:473–527.

    CAS  Google Scholar 

  • Vale, W., Rivier, J., and Burgus, R. Synthetic TRF (thyrotropin releasing factor) analogues II. pGlu-N31 mMe-His-Pro-NH2: A synthetic analogue with specific activity greater than that of TRF. Endocrinology 1971; 89:1485–1488.

    PubMed  CAS  Google Scholar 

  • Valzelli, L. (1973): W. B. Essman (Ed.), Psy chopharmacology. New York: Spectrum Publishing.

    Google Scholar 

  • Van Ree, J. M., and Otte, A. P. Effects of (Des-Try1)-y-endorphin and α-endorphin as compared to haloperidol and amphetamine on nucleus accumbens self-stimulation. Neuropharmacology 1980; 19:429–434.

    PubMed  Google Scholar 

  • Van Riezen, H., Rigter, H., and DeWied, D. Possible significance of ACTH fragments for human mental performance. Behavioral Biol. 1977; 20:311–324.

    Google Scholar 

  • Waller, M. B., and Richter, J. A. Effects of pentobarbital and Ca2+ on the resting and K+-stimulated release of several endogenous neurotrans-mitters from rat midbrain slices. Biochemical Pharmacol. 1980; 29:2189–2198.

    CAS  Google Scholar 

  • Warberg, J., Eskay, R. L., Barnea, A., Reynolds, R. C., and Porter, J. C. Release of luteinizing hormone releasing hormone and thyrotropin releasing hormone from a synaptosome-enriched fraction of hypothala-mic homogenates. Endocrinology 1977; 100:814–825.

    PubMed  CAS  Google Scholar 

  • Wilson, I., Lara, P. P., and Prange, A. J., Jr. Thyrotropin-releasing hormone in schizophrenia. Lancet 1973; 819:43–44.

    Google Scholar 

  • Wimersma Greidanus, Tj. B. van, and DeWied, D. (1976): Dorsal hippocampus: A site of action of neuropeptides on avoidance behavior? In The Neuro-peptides: Pharmacology Biochemistry and Behavior, Vol. 5, suppl. 1, pp. 29–33.

    Google Scholar 

  • Winokur, A., and Beckman, A. L. Effects of thyrotropin releasing hormone, norepinephrine and acetylcholine on the activity of neurons in hypothalamus, septum and cerebral cortex of the rat. Brain Res. 1978; 150:205–209.

    PubMed  CAS  Google Scholar 

  • Winokur, A., Davis, R., and Utiger, R. D. Subcellular distribution of thyrotropin-releasing hormone (TRH) in rat brain and hypothalamus. Brain Res. 1977; 120:423–434.

    PubMed  CAS  Google Scholar 

  • Yarbrough, G. G. TRH potentiates excitatory actions of acetylcholine on cerebral cortical neurons. Nature 1976; 263:523–524.

    PubMed  CAS  Google Scholar 

  • Yarbrough, G. G. Studies on the neuropharmacology of thyrotropin releasing hormone (TRH) and a new TRH analog. Eur. J. Pharmacol 1978; 48:19–27.

    PubMed  CAS  Google Scholar 

  • Yarbrough, G. G., and Singh, D, K. Intravenous thyrotropin releasing hormone (TRH) enhances the excitatory actions of acetylcholine (ACH) on rat cortical neurons. Experientia 1978; 34:390.

    PubMed  CAS  Google Scholar 

  • Youngblood, W. W., Lipton, M. A., and Kizer, J. S. TRH-like immuno-reactivity in urine, serum and extrahypothalamic brain: Non-identity with synthetic pyroglu-hist-pro-NH2 (TRH). Brain Res. 1978; 151:99–116.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1983 Spectrum Publications, Inc.

About this chapter

Cite this chapter

Hirsch, M.D. (1983). Extrapituitary Functions of Thyrotropin-Releasing Hormone. In: Essman, W.B. (eds) Hormonal Actions in Non-endocrine Systems. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-6601-7_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-6601-7_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-009-6603-1

  • Online ISBN: 978-94-009-6601-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics