Skip to main content

Influence of incubation water content on oxygen uptake in embryos of the Burmese python (Python molurus bioittatus)

  • Chapter
Book cover Respiration and metabolism of embryonic vertebrates

Part of the book series: Perspectives in vertebrate science ((PIVS,volume 3))

Abstract

Flexible-shelled reptilian eggs exchange water via two routes; 1) diffusive water vapor loss through shell interstices and 2) liquid water imbibition from incubation substrate in response to a water potential gradient. Uptake of liquid water may result in the filling of some of the shell interstices which would in turn increase shell O2 diffusion resistance. We measured whole-egg mass changes, water vapor conductance (\({G_{{H_2}O}}\)), O2 consumption, trans-shell \({P_{{O_2}}}\) gradient, incubation period, and hatchling weights in four groups of Burmese python (Python molurus bivittatus) eggs incubated in substrates with estimated water potentials of −360, −220, −130 and −80 kPa respectively. O2 consumption among the four groups did not differ significantly throughout incubation. Trans-shell \({P_{{O_2}}}\) gradients measured during the periods of maximum O2 consumption varied from 34 ± 6 (s.e.) torr in eggs incubated in the driest substrate to 64 ± 9 torr in eggs incubated in the wettest substrate, and O2 conductance values calculated from trans-shell \({P_{{O_2}}}\) and O2 consumption data were only about one-tenth of that predicted from \({G_{{H_2}O}}\). Thus, the incubating Burmese python egg has a functional water layer in the shell, and the embryos are subject to hypoxia comparable to that observed in developing chicken embryos. This does not appear to compromise tissue O2 delivery, however, because hatchling weights and O2 consumption are not adversely affected by increased incubation substrate water content.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ackerman, R.A. (1980). Physiological and ecological aspects of gas exchange by sea turtle eggs. Am. Zool. 20: 575–584.

    Google Scholar 

  • Ar, A., Paganelli, C.V., Reeves, R.B., Green. D.G. and Rahn, H. (1974). The avian egg: water vapor conductance, shell thickness, and functional pore area. Condor 76: 153–158.

    Article  Google Scholar 

  • Ar, A., and Rahn, H. (1978). Interdependence of gas conductance. incubation length, and weight of the avian egg. In: Respiratory Function in Birds. Adult and Embryonic. J. Piiper, ed., Springer-Verlag, New York. pp. 227–236.

    Google Scholar 

  • Hutchison, V.H., Dowling, H.G. and A. Vinegar (1966). Thermoregulation in a brooding female Indian Python. Python molurus hivittatus. Science 151: 694–696.

    Article  PubMed  CAS  Google Scholar 

  • Lynn, W.G. and Von Brand, T. (1945). Studies on the oxygen consumption and water metabolism of turtle embryos. Biol Bull. 88: 112–125.

    Article  CAS  Google Scholar 

  • Packard, G.C. and Packard, M.J. (1980). Evolution of the cleidoic egg among reptilian antecedents of birds. Am. Zool. 20: 351–362.

    Google Scholar 

  • Packard, G.C., Packard, M.J. and Boardman, T.J. (1981). Pattern and possible significance of water exchange by flexible-shelled eggs of painted turtles (Chrysemys pieta). Physiol. Zool. 54: 165–178.

    Google Scholar 

  • Packard, G., Packard, M., Boardman, T., Morris, K. and Shuman, R. (1983). Influence of water exchanges by flexible-shelled eggs of painted turtles (Chrysernyspicta). Physiol. Zool. 56: 217–230.

    Google Scholar 

  • Packard, G.C., Taigen, T.L., Packard, M.J. and Boardman, T.J. (1980). Water relations of pliableshelled eggs of common snapping turtles (Chetydra serpentina). Can J. Zool. 58: 1404–1411.

    Article  PubMed  CAS  Google Scholar 

  • Packard, G.C., Taigen, T.L., Packard, M.J. and Shuman, R.D. (1979). Water conductance of testudinian and crocodilian eggs (Class Reptilia). Respir. Physiol. 38: 1–10.

    Article  PubMed  CAS  Google Scholar 

  • Packard, G.C., Tracy, C. R. and Roth. J.J. (1977). The physiological ecology of reptilian eggs and embryos, and the evolution of viviparity within the class Reptilia. Biol. Rev. 52: 71–105.

    Article  PubMed  CAS  Google Scholar 

  • Paganelli, C.V., Ackerman, R.A. and Rahn, H. (1978). The avian egg: in vivo conductances to oxygen, carbon dioxide, and water vapor in late development. In: Respiratory Function in Birds, Adult and Embryonic. J. Paper, ed.. Springer-Verlag. New York, pp. 212–218.

    Google Scholar 

  • Scholander, P.F. (1947). Analyzer for accurate estimation of respiratory gases in one-half cubic centrimeter samples. J. Biol. Chem. 167: 235–2511.

    PubMed  CAS  Google Scholar 

  • Sokal, R.R. and Rohlf, F.J. (1969). Biometry. W.H. Freeman and Co., San Francisco.

    Google Scholar 

  • Tazawa, H., Ar, A., Rahn, H. and Piiper, J. (1980). Repetitive and simultaneous sampling from the air cell and blood vessels in the chick embryo. Respir. Physiol. 39: 265–272.

    Article  PubMed  CAS  Google Scholar 

  • Tracy, C. R., Packard, G.C. and Packard, M.J. (1978). Water relations of chelonian eggs. Physiol. Zool. 51: 378–387.

    Google Scholar 

  • Van Mierop, L.H.S. and Barnard, S.M. (1976). Observations on the reproduction of Python molurus bivittatus (Reptilia, Serpentes. Boidae). J. Herpetol. 10: 333–340.

    Article  Google Scholar 

  • Vleck, C.M., Vleck, D. and Hoyt, D.F. (1980). Patterns of metabolism and growth in avian embryos. Am. Zool. 20: 405–416.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Dr W. Junk Publishers, Dordrecht

About this chapter

Cite this chapter

Black, C.P., Birchard, G.F., Schuett, G.W., Black, V.D. (1984). Influence of incubation water content on oxygen uptake in embryos of the Burmese python (Python molurus bioittatus). In: Seymour, R.S. (eds) Respiration and metabolism of embryonic vertebrates. Perspectives in vertebrate science, vol 3. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-6536-2_9

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-6536-2_9

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-009-6538-6

  • Online ISBN: 978-94-009-6536-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics