Skip to main content

Coupling of physiology of embryonic turtles to the hydric environment

  • Chapter

Part of the book series: Perspectives in vertebrate science ((PIVS,volume 3))

Abstract

Embryonic turtles developing in flexible-shelled eggs consume more of their yolk and grow larger before hatching when incubated in relatively wet environments than they do when incubated in relatively dry settings. These differences in size of young result from differences in rates of embryonic metabolism and growth in some species and from differences in duration of incubation in others. However, neither the specific physical factor eliciting the responses nor the underlying physiological mechanism has been established unequivocally for any species. Because embryos in relatively wet environments have different patterns of net water-exchange than do embryos in drier settings, most attention has been directed at means by which such exchanges could influence their physiology. Water exchanges may exercise control over oxidative metabolism by altering bulk water in cytoplasm of cells of growing animals, by affecting concentrations of urea in body fluids of embryos, by influencing growth of the allantois, and, indirectly, by affecting incubation temperature; water fluxes may influence duration of incubation via effects on water potential in compartments such as the yolk. However, the evidence to support these hypotheses is fragmentary, and no single mechanism is applicable to all species studied to date.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ackerman, R.A. (1977). The respiratory gas exchange of sea turtle nests(Chelonia, Caretta). Respir. Physiol.31: 19–38.

    Article  PubMed  CAS  Google Scholar 

  • Ackerman, R.A. (1981). Growth and gas exchange of embryonic sea turtles(Chelonia, Caretta). Copeia1981: 757–765.

    Article  Google Scholar 

  • Alho, C.J.R. and Padua, L.F.M. (1982). Reproductive parameters and nesting behavior of the Amazon turtlePodocnemis expansa(Testudinata: Pclomedusidae) in Brazil.Can. J. Zool.60: 97–103.

    Article  Google Scholar 

  • Bull, J.J. (1980). Sex determination in reptiles. Q. Rey. Biol.55: 3–21.

    Article  Google Scholar 

  • Burger, J. (1976). Temperature relationships in nests of the northern diamondback terrapin.Malaclemys terrapin terrapin. Herpetologica32: 412–418.

    Google Scholar 

  • Bustard, H.R. and Greenham, P. (1968). Physical and chemical factors affecting hatching in the green turtle,Chelonia mydas (L.).Ecology 49: 269–276.

    Article  Google Scholar 

  • Clark, H. (1953). Metabolism of the black snake embryo. I. Nitrogen excretion. J. Exp. Biol. 30: 492–501.

    CAS  Google Scholar 

  • Clark, H. and Fischer, D. (1957). A reconsideration of nitrogen excretion by the chick embryo. J. Exp. Zool. 136: 1–15.

    Article  PubMed  CAS  Google Scholar 

  • Clark, H., Sisken, B. and Shannon. J.E. (1957). Excretion of nitrogen by the alligator embryo. J. Cell. Comp. Physiol. 50: 129–134.

    Article  CAS  Google Scholar 

  • Clegg, J.S. (1981a). Metabolic consequences of the extent and disposition of the aqueous intracellular environment. J. Exp. Zool. 215: 303–313.

    Article  CAS  Google Scholar 

  • Clegg, J.S. (1981b). Intracellular water, metabolism, and cellular architecture. Collect. Phenom. 3: 289–312.

    Google Scholar 

  • Cunningham, B. and Hurwitz, A.P. (1936). Water absorption by reptile eggs during incubation. Am.Nat. 70: 590–595.

    Article  Google Scholar 

  • Dodge, C.H., Dimond. M.T. and Wunder. C.C. (1978). Effect of temperature on the incubation time of eggs of the eastern box turtle (Terrapene carolina carolina Linné). Florida Mar. Res. Publ. 33: 8–11.

    Google Scholar 

  • Engel, W., Klemme, B. and Schmid, M. (1981). H-Y antigen and sex-determination in turtles. Differentiation 20: 152–156.

    Article  CAS  Google Scholar 

  • Ewert, M.A. (1979). The embryo and its eggs: development and natural history. In: Turtles: Perspectives and Research. M. Harless and H. Morlock, eds., Wiley. New York, pp. 333–413.

    Google Scholar 

  • Feder, M.E., Satel. S.L. and Gibbs, A.G. (1982). Resistance of the shell membrane and mineral layer to diffusion of oxygen and water in flexible-shelled eggs of the snapping turtle(Chelydra serpentina). Respir. Physiol.49: 279–291.

    Article  Google Scholar 

  • Flegg, P.B. (1953). The effect of aggregation on diffusion of gases and vapours through soils. J. Sci. Food Agric. 4: 104–108.

    Article  CAS  Google Scholar 

  • Giordano,C., Bloom, J. and Merrill, J.P. (1962). Effects of urea on physiological systems. I. Studies on monoamine oxidase activity. J. Lab. Clin. Med. 59: 396–400.

    PubMed  CAS  Google Scholar 

  • Goode, J. and Russell, J. (1968). Incubation of eggs of three species of chelid tortoises, and notes on their embryological development. Aust. J. Zool. 16: 749–761.

    Article  Google Scholar 

  • Gutzke, W.H.N. and Paukstis, G.L. (1983). Influence of the hydric environment on sexual differentiation of turtles. J. Exp. Zool. 226: 467–469.

    Article  PubMed  CAS  Google Scholar 

  • Hand. S.C. and Somero, G.N. (1982). Urea and methylamine effects on rabbit muscle phosphofructokinase. Catalytic stability and aggregation state as a function of pH and temperature. J. Biol. Chem. 257: 734–741.

    PubMed  CAS  Google Scholar 

  • Hendrickson. J.R. (1958). The green sea turtle, Chelonia mydas (Linn.) in Malaya and Sarawak. Proc. Zool. Soc. London 130: 455–535.

    Article  Google Scholar 

  • Kleiber. M. (1961). The Fire of Life/An Introduction to Animal Energetics. Wiley, New York.

    Google Scholar 

  • Marshall, T.J. (1959). The diffusion of gases through porous media. J. Soil Sci. 10: 79–82.

    Article  Google Scholar 

  • Miller, J.D. and Limpus. C.J. (1981). Incubation period and sexual differentiation in the green turtle Chelonia mydas L. In: Proceedings of the Melbourne Herpetological Symposium. C.B. Banks and A.A. Martin, eds.. Zoological Board of Victoria, Parkville, Australia, pp. 66–73.

    Google Scholar 

  • Mitsukuri, K. (1890). On the foetal membranes of Chelonia. Anat. Anz. 5: 510–519.

    Google Scholar 

  • Mitsukuri. K. (1891). On the foetal membranes of Chelonia. J. Coll. Sci. Imp. Univ. Tokyo 4: 1–53.

    Google Scholar 

  • Morris, K.A. Packard, G.C.. Boardman. T.J., Paukstis. G.L. and Packard, M.J. (1983). Effect of the hydric environment on growth of embryonic snapping turtles (Chelydra serpentina). Herpetologica 39: 272–285.

    Google Scholar 

  • Muth, A. (1980). Physiological ecology of desert iguana (Dipsosaurus dorsalis) eggs: temperature and water relations. Ecology 61: 1335–1343.

    Article  Google Scholar 

  • Norris, D.O. (1980). Vertebrate Endocrinology. Lea & Febiger, Philadelphia.

    Google Scholar 

  • Packard. G.C. and Packard, M.J. (1980). Evolution of the cleidoic egg among reptilian antecedents of birds.Am. Zool.20: 351–362.

    Google Scholar 

  • Packard. G.C., Taigen, T.L., Boardman. T.J.. Packard, M.J. and Tracy. C.R. (1979a). Changes in mass of softshell turtle (Trionvx spiniferus) eggs incubated on substrates differing in water potential. Herpetologica 35: 78–86.

    Google Scholar 

  • Packard, G.C., Taigen. T. L., Packard. M.J. and Shuman, R.D. (1979b). Water-vapor conductance of testudinian and crocodilian eggs (class Reptilia). Respir. Physiol. 38: 1–10.

    Article  CAS  Google Scholar 

  • Packard. G.C., Taigen. T.L.. Packard, M.J. and Boardman, T.J. (1980). Water relations of pliable-shelled eggs of common snapping turtles (Chelvdra.serpentina). Can. J. Zool. 58: 1404–1411.

    Article  PubMed  CAS  Google Scholar 

  • Packard. G.C.. Packard, M.J. and Boardman. T.J. (1981a). Patterns and possible significance of water exchange by flexible-shelled eggs of painted turtles(Chrvsemys picta). Physiol. Zool. 54: 165–178.

    Google Scholar 

  • Packard, G.C., Packard. M.J., Boardman, T.J. and Ashen, M.D. (1981b). Possible adaptive value of water exchanges in flexible-shelled eggs of turtles. Science 213: 471–473.

    Article  CAS  Google Scholar 

  • Packard, G.C., Taigen. T.L.. Packard, M.J. and Boardman, T.J. (1981c). Changes in mass of eggs of softshell turtles (Trionyx spiniferua) incubated under hydric conditions simulating those of natural nests.J. Zool. 193: 8l-90.

    Article  Google Scholar 

  • Packard, G.C.. Packard. M.J. and Boardman, T.J. (1982). An experimental analysis of the water relations of eggs of Blanding’s turtles(Emydoidea blandingii). Zool. J. Linn. Soc. 75: 23–34.

    Article  Google Scholar 

  • Packard, G.C.. Packard. M.J. and Boardman, T.J. (1982). An experimental analysis of the water relations of eggs of Blanding’s turtles (Emydoidea blandingii). Zool. J. Linn. Soc. 75: 23–34.

    Article  Google Scholar 

  • Packard, G.C., Packard, M.J., Boardman. T.J., Morris. K.A. and Shuman, R.D. (1983b). Influence of water exchanges by flexible-shelled eggs of painted turtles Chrysemys picta on metabolism and growth of embryos. Physiol. Zool. 56: 217–230.

    Google Scholar 

  • Packard, G.C., Packard, M.J., Boardman. T.J., Morris. K.A. and Shuman, R.D. (1983b). Influence of water exchanges by flexible-shelled eggs of painted turtles Chrysemys picta on metabolism and growth of embryos. Physiol. Zool. 56: 217–230.

    Google Scholar 

  • Packard, M.J., Packard. G.C. and Boardman, T.J. (1982). Structure of eggshells and water relations of reptilian eggs. Herpetologica 38: 136–155.

    Google Scholar 

  • Pieau, C. (1982). Modalities of the action of temperature on sexual differentiation in field-developing embryos of the European pond turtle Emys orbicularis (Emydidae). J. Exp. Zool. 220: 353–360.

    Article  Google Scholar 

  • Pieau, C., Mignot, T., Dorizzi, M. and Guichard, A. (1982). Gonadal steroid levels in the turtle Emys orbicularis L.: a preliminary study in embryos, hatchlings, and young as a function of the incubation temperature of eggs. Gen. Comp. Endocrinol. 47: 392–398.

    Article  PubMed  CAS  Google Scholar 

  • Rajagopalan, K.V., Fridovich, I. and Handler. P. (1961). Competitive inhibition of enzyme activity by urea. J. Biol. Chem. 236: 1059–1065.

    PubMed  CAS  Google Scholar 

  • Ricklefs, R.E. and Burger, J. (1977). Composition of eggs of the diamondback terrapin. Am. Midl. Nat. 97: 232–235.

    Article  Google Scholar 

  • Schmidt-Nielsen, K. (1964). Desert Animals. Oxford Univ. Press, London.

    Google Scholar 

  • Snedecor, G.W. and Cochran, W.G. (1967). Statistical Methods. Sixth edition. Iowa State University Press, Ames.

    Google Scholar 

  • Snyder, G.K. and Birchard. G.F. (1982). Water loss and survival in embryos of the domestic chicken. J. Exp. Zool. 219: 115–117.

    Article  PubMed  CAS  Google Scholar 

  • Tazawa, H. (1980). Adverse effect of failure to turn the avian egg on the embryo oxygen exchange. Respir. Physiol. 41: 137–142.

    Article  PubMed  CAS  Google Scholar 

  • Thompson, M. (1981). Gas tensions in natural nests and eggs of the tortoise Emydura macquarii. In: Proceedings of the Melbourne Herpetological Symposium. C.B. Banks and A.A. Martin, eds., Zoological Board of Victoria, Parkville, Australia, pp. 74–77.

    Google Scholar 

  • Tracy, C.R. (1982). Biophysical modeling in reptilian physiology and ecology. In: Biology of the Reptilia, Vol. 12, Physiology C. Physiological Ecology. C. Gans and F.H. Pough, eds., Academic Press, London, pp. 275–321.

    Google Scholar 

  • Tracy, C.R., Packard, G.C. and Packard, M.J. (1978). Water relations of chelonian eggs. Physiol. Zool. 51: 378–387.

    Google Scholar 

  • van Bavel, C.H.M. (1952). Gaseous diffusion and porosity in porous media. Soil Sci. 73: 91–104.

    Article  Google Scholar 

  • Vogt, R.C. (1980). Natural history of the map turtles Graptemys pseudogeographica and G. ouachitensis in Wisconsin. Tulane Stud. Zool. Rot. 22: 17–48.

    Google Scholar 

  • Vogt, R.C. and Bull, J.J. (1982). Temperature controlled sex-determination in turtles: ecological and behavioral aspects. Herpetologica 38: 156–164.

    Google Scholar 

  • Wilhoft, D.C., Hotaling, E. and Franks, P. (1983). Effects of temperature on sex determination in embryos of the snapping turtle. Chelvdra serpentina. J. Herpetol. 17: 38–42.

    Google Scholar 

  • Yancey, P.H., Clark, M.E.. Hand. S.C., Bowlus, R.D. and Somero, G.N. (1982). Living with water stress: evolution of osmolyte systems. Science 217: 1214–1222.

    Article  PubMed  CAS  Google Scholar 

  • Yntema, C.L. (1978). Incubation times for eggs of the turtle Chelydra serpentina (Testudines: Chelydridae) at various temperatures. Herpetologica 34: 274–277.

    Google Scholar 

  • Zaborski, P., Dorizzi, M. and Pieau, C. (1982). H-Y antigen expression in temperature sex-reversed turtles (Emys orbicularis). Differentiation 22: 73–78.

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Dr W. Junk Publishers, Dordrecht

About this chapter

Cite this chapter

Packard, G.C., Packard, M.J. (1984). Coupling of physiology of embryonic turtles to the hydric environment. In: Seymour, R.S. (eds) Respiration and metabolism of embryonic vertebrates. Perspectives in vertebrate science, vol 3. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-6536-2_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-6536-2_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-009-6538-6

  • Online ISBN: 978-94-009-6536-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics