Skip to main content

Carbon dioxide transport and acid-base balance in chickens before and after hatching

  • Chapter

Part of the book series: Perspectives in vertebrate science ((PIVS,volume 3))

Abstract

During the late stages of incubation, when the CO2 increases within the shell due to higher metabolic rate and a fixed shell conductance, the increases in standard CO2 content, Haldane effect, CO2 capacitance coefficient and hematocrit augment CO2 transport and buffer capacity. The buildup of CO2 results in respiratory disturbances of acid-base balance, but the decrease in pH is mitigated by an increase in non-respiratory bicarbonate. In the final stages of the prenatal period, a metabolic change in pH, partially due to lactate buildup, becomes dominant over the respiratory change.

After the chick pips internally and begins pulmonary ventilation that promotes CO2 loss, standard bicarbonate of Van Slyke decreases. Blood \(P_{{O_2}}^{}\) varies widely among embryos and the average \(P_{{O_2}}^{}\) is not significantly different from the final stages of prenatal period. Hence, the average pH decreases further due to a fall in non-respiratory bicarbonate. The contribution of pulmonary ventilation to the acid-base status is variable, probably in conformity with an individual established degree of ventilatory movement.

Finally the chick pips externally and undergoes respiratory compensation and a rise in pH. After hatching, the blood \(P_{{O_2}}^{}\) further decreases by the large convective conductance of pulmonary ventilation but the pH change is small due to a corresponding fall in non-respiratory bicarbonate. This is immediately followed by a gradual increase in blood \(P_{{O_2}}^{}\) and precipitous rise in non-respiratory bicarbonate synchronizing with the initiation of feeding. The postnatal pH results in a light positive overawing during 2–3 d and stabilizes within 1–2 weeks.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Boutilier, R.G., Gibson, M.A.. Toews, D.P. and Anderson, W. (1977). Gas exchange and acid-base regulation in the blood and extraembryonic fluids of developing chicken embryo. Respir. Physiol. 31: 81–89.

    Article  PubMed  CAS  Google Scholar 

  • Calder, W.A. and Schmidt-Nielsen, K. (1968). Panting and blood carbon dioxide in birds. Am. J. Physiol. 215: 477–482.

    PubMed  CAS  Google Scholar 

  • Chiodi, C. and Terman, KW. (1965). Arterial blood gases of domestic hen. Am. J. Physiol. 208: 798–800.

    PubMed  CAS  Google Scholar 

  • Dawes, C. and Simkiss, K. (1969). The acid-base status of the blood of developing chick embryo. J. Exp. Biol. 50: 79–86.

    Google Scholar 

  • Erasmus, D.W., Howell, B.J. and Rahn. H. (1970171). Ontogeny of acid-base balance in the bullfrog and chicken. Respir. Physiol. 11: 46–53.

    Google Scholar 

  • Frank, F.R. and Burger. R.E. (1965). The effect of carbon dioxide inhalation and sodium bicarbonate ingestion on egg shell deposition. Pouls. Sci. 44: 1604–1606.

    Google Scholar 

  • Frankel, H.M. (1965). Blood lactate and pyruvate and evidence for hypocapnic lacticacidosis in the chicken. Proc. Soc. Exp. Biol. Med. 11: 261–263.

    Google Scholar 

  • Frankel, H.M. and Frascells, D. (1968). Blood respiratory gases, lactate, and pyruvate during thermal stress in the chicken. Proc. Soc. Exp. Biol. Med. 127: 997–999.

    PubMed  CAS  Google Scholar 

  • Girard, H. (1971). Respiratory acidosis with partial metabolic compensation in chick embryo blood during normal development. Respir. Physiol. 13: 343–351.

    Article  PubMed  CAS  Google Scholar 

  • Kawashiro, T. and Scheid. P. (1975). Arterial blood gases in undisturbed resting birds: Measurement in chicken and duck. Respir. Physiol. 23: 337–342.

    Article  PubMed  CAS  Google Scholar 

  • Natelson, S. (1951). Routine use of ultramicro method in the clinical laboratory. Am. J. Clin. Pathol. 21: 1153–1172.

    PubMed  CAS  Google Scholar 

  • Piiper, J., Dejours, P., Haab. P. and Rahn, H. (1971). Concepts and basic quantities in gas exchange physiology. Respir. Physiol. 13: 292–304.

    Article  PubMed  CAS  Google Scholar 

  • Tazawa, H. (1971). Measurement of respiratory parameters in blood of chicken embryo. J. Appl. Physiol. 31: 17–20.

    Google Scholar 

  • Tazawa, H. and Mochizuki. M. (1977). Oxygen analysis of chicken embryo blood. Respir. Physiol. 31: 203–215.

    Article  PubMed  CAS  Google Scholar 

  • Tazawa, H. (1978). Gas transfer in the chorioallantois. In: Respiratory Function in Birds, Adult and Embryonic. J. Piiper, ed.. Springer-Verlag. Berlin, pp. 274–291.

    Google Scholar 

  • Tazawa, H. (1980). Oxygen and CO. exchange and acid-base regulation in the avian embryo. Am. Zoo/. 20: 395–404.

    Google Scholar 

  • Tazawa, H., Ar, A., Rahn, H. and Piiper, J. (1980). Repetitive and simultaneous sampling from the air cell and blood vessels in the chick embryo. Respir. Physiol. 39: 265–272.

    Article  PubMed  CAS  Google Scholar 

  • Tazawa, H. (1982). Regulatory processes of metabolic and respiratory acid-base disturbances in embryos. J. Appl. Physiol.: Respirat. Enriron. Exercise Physiol. 53: 1449–1454.

    CAS  Google Scholar 

  • Tazawa, H. (1982). Regulatory processes of metabolic and respiratory acid-base disturbances in embryos. J. Appl. Physiol.: Respirat. Enriron. Exercise Physiol. 53: 1449–1454.

    CAS  Google Scholar 

  • Tazawa, H., Visschedijk, A.H.J. and Piiper, J. (1983h). Blood gases and acid-base status in chicken embryos with naturally varying egg shell conductance. Respir. Physiol. (in press).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Dr W. Junk Publishers, Dordrecht

About this chapter

Cite this chapter

Tazawa, H. (1984). Carbon dioxide transport and acid-base balance in chickens before and after hatching. In: Seymour, R.S. (eds) Respiration and metabolism of embryonic vertebrates. Perspectives in vertebrate science, vol 3. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-6536-2_24

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-6536-2_24

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-009-6538-6

  • Online ISBN: 978-94-009-6536-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics