Some Aspects of the Turbulent Stable Boundary Layer

  • F. T. M. Nieuwstadt


We consider the structure of the stable boundary layer using the concept of local scaling. In this scaling approach turbulence variables, non-dimensionalized with measurements taken at the same height, can be expressed as a function of a single parameter z/Λ, where z is the height and Λ a local Obukhov length. One of the consequences is that locally scaled variables become constant above the surface layer. This behavior is illustrated with observations of the Richardson number. With local scaling as a closure hypothesis we then formulate a model of the stable boundary layer. Its solution for steady-state conditions is given. One result we obtain is the well-known Zilitinkevich equation for the boundary-layer height. A comparison of this equation with observations results in a reasonable agreement. Also we discuss some alternative expressions for the stable boundary-layer height and compare them with observations. Another result of our model is an explicit profile for the K-coefficient as a quadratic function of height. We discuss the consequences of this expression for the dispersion of a point source emission. We find that the time scale of diffusion in this case is about 5 hours.


Boundary Layer Richardson Number Nocturnal Boundary Layer Local Scaling Gradient Richardson Number 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. André, J.C.: 1983, ‘On the variability of the nocturnal boundary-layer depth’, J. Atmos. Sci. 40, 2309–2311.CrossRefGoogle Scholar
  2. André, J.C. and Mahrt, L.: 1982, ‘The nocturnal surface inversion and influence of clear-air radiative cooling’, J. Atmos. Sci. 39, 864878.CrossRefGoogle Scholar
  3. Arya, S.P.S.: 1981: ‘Parameterizing the height of the stable atmospheric boundary layer’, J. Appl. Meteorol. 20, 1192–1202.CrossRefGoogle Scholar
  4. Brost, R.A. and Wyngaard, J.C.: 1978, ‘A model study of the stably stratified planetary boundary layer’, J. Atmos. Sci. 35, 1427–1440.CrossRefGoogle Scholar
  5. Businger, J.A., Wyngaard, J.C., Izumi, Y., and Bradley, F.F.: 1971, ‘Flux profile relationships in the atmospheric surface layer’, J. Atmos. Sci. 28, 181–189.CrossRefGoogle Scholar
  6. Businger, J.A.: 1982, ‘Equations and concepts’, Atmospheric Turbulence and Air Pollution Modelling, F.T.M. Nieuwstadt and H. van Dop (eds.), D. Reidel Publishing Company, Dordrecht, Holland.Google Scholar
  7. Caughey, S.J. and Readings, C.J.: 1975, ‘An observation of waves and turbulence in the earth’s boundary layer’, Boundary-Layer Meteorol. 9, 279–296.CrossRefGoogle Scholar
  8. Caughey, S.J., Wyngaard, J.C. and Kaimal, J.C.: 1979, ‘Turbulence in the evolving stable boundary layer’, J. Atmos. Sci., 36, 1041–1052.Google Scholar
  9. Dyer, A.J.: 1974, ‘A Review of flux-profile relationships’, Boundary- Layer Meteorol. 7, 363–372.CrossRefGoogle Scholar
  10. Einaudi, F. and Finnigan, J.J.: 1981, ‘The interaction between an internal gravity wave and the planetary boundary layer. Part I: The linear analysis’, Quart. J. Roy. Meteorol. Soc. 107, 793–806.CrossRefGoogle Scholar
  11. Garratt, J.R. and Brost, R.A.: 1981, ‘Radiative cooling effects within and above the nocturnal boundary layer’, J. Atmos. Sci., 2730–2746.Google Scholar
  12. Garratt, J.R.: 1982a, ‘Observations in the nocturnal boundary layer’, Boundary-Layer Meteorol. 22, 21–48.CrossRefGoogle Scholar
  13. Garratt, J.R.: 1982b, ‘Surface fluxes and the nocturnal boundary-layer height’, J. Appl. Meteorol. 21, 725–729.CrossRefGoogle Scholar
  14. Hunt, J.C.R.: 1982, ‘Diffusion in the stable boundary layer’, Atmospheric Turbulence and Air Pollution Modelling, F.T.M. Nieuwstadt and H. van Dop (eds.), D. Reidel Publishing Company, Dordrecht Holland.Google Scholar
  15. Hunt, J.C.R., Kaimal, J.C., Gaynor, J.E. and Korrell, A.: 1983, ‘Observations of turbulence structure in stable layers at the Boulder Atmospheric Observatory’. Studies of Nocturnal Stable Layers at BAO, J.C. Kaimal (ed.), NOAA/ERL, Boulder.Google Scholar
  16. Keisuke, F., Masamomoto, N., and Ueda, H.: 1983, ‘A laboratory experiment on momentum and heat transfer in the stratified surface layer’, Quart. J. R. Meteorol. Soc. 109, 661–676.CrossRefGoogle Scholar
  17. Kerman, B.R.: 1979, ‘A similarity model for maximum ground-level concentration in a height-invariant, stably stratified atmospheric boundary layer’, Boundary-Layer Meteorol. 17, 297–313.CrossRefGoogle Scholar
  18. Kondo, J., Kanechika, O. and Yasuda, N.: 1978, ‘Heat and momentum transfer under strong stability in the atmospheric surface layer’, J. Atmos. Sci. 35, 1012–1021.CrossRefGoogle Scholar
  19. Mahrt, L.: 1981, ‘Modelling the depth of the stable boundary-layer’, Boundary-Layer Meteorol. 21, 3–19.CrossRefGoogle Scholar
  20. Mahrt, L. and Heald, R.C.: 1979, ‘Comments on determining height of the nocturnal boundary layer’, J. Appl. Meteorol. 36, 383.CrossRefGoogle Scholar
  21. Mahrt, L., Heald, R.C., Lenschow, D.H. and Stankov, B.B.: 1979, ‘An observational study of the structure of the nocturnal boundary layer’, Boundary-Layer Meteorol. 17, 247–264.CrossRefGoogle Scholar
  22. Mahrt, L., André, J.C. and Heald, R.C.: 1982, ‘On the depth of the nocturnal boundary layer’, J. Appl. Meteorol. 21, 90–92.CrossRefGoogle Scholar
  23. McPhee, M.: 1981, ‘An analytic similarity theory for the planetary boundary layer stabilized by surface buoyancy’, Boundary-Layer Meteorol. 21, 325–339.CrossRefGoogle Scholar
  24. Monin, A.S. and Yaglom, A.M.: 1971, ‘Statistical Fluid Mechanics. Vol. I’, M.I.T. Press, Cambridge, Mass.Google Scholar
  25. Nai-Ping, L., Neff, W.D. and Kaimal, J.C.: 1983, ‘Wave and turbulence structure in a disturbed nocturnal inversion’, Boundary-Layer Meteorol. 26, 141–155.CrossRefGoogle Scholar
  26. Nieuwstadt, F.T.M.: 1981, ‘The steady-state height and resistance laws of the nocturnal boundary layer: Theory compared with Cabauw observations’, Boundary-Layer Meteorol. 20, 3–17.CrossRefGoogle Scholar
  27. Nieuwstadt, F.T.M.: 1984a, ‘The turbulent structure of the stable nocturnal boundary layer’, submitted to J. Atmos. Sci.Google Scholar
  28. Nieuwstadt, F.T.M.: 1984b, ‘A model for the stationary, stable boundary layer’, Proceedings of the conference on Models of Turbulence and Diffusion in Stably Stratified Regions of the Natural Environment, March 1983, Cambridge.Google Scholar
  29. Nieuwstadt, F.T.M. and Tennekes, H.: 1981, ‘A rate equation for the nocturnal boundary-layer height’, J. Atmos. Sci. 38, 1418–1428.CrossRefGoogle Scholar
  30. Pearson, H.J., Putlock, J.S. and Hunt, J.C.R.: 1983, ‘A statistical model of fluid-element motions and vertical diffusion in a homogeneous statified turbulent flow’, J. Fluid Mech. 129, 219–249.CrossRefGoogle Scholar
  31. Rao, K.S. and Snodgrass, H.F.: 1979, ‘Some parameterizations of the nocturnal boundary layer’, Boundary-Layer Meteorol. 17, 15–28.CrossRefGoogle Scholar
  32. Smeda, M.: 1979, ‘Incorporation of planetary boundary-layer processes into numerical forecasting models’, Boundary-Layer Meteorol. 16, 115–129.CrossRefGoogle Scholar
  33. Stull, R.B.: 1983a, ‘A heat-flux history length scale for the nocturnal boundary layer’, Tellus 35A, 219–230.CrossRefGoogle Scholar
  34. Stull, R.B.: 1983b, ‘Integral scales for the nocturnal boundary layer part 2: heat budget, transport, and energy implications’, J. Climate Appl. Meteor. 22, 1932–1941.CrossRefGoogle Scholar
  35. Tennekes, H.: 1982, ‘Similarity relations, scaling laws and spectral dynamics’, Atmospheric Turbulence and Air Pollution Modelling, F.T.M. Nieuwstadt and H. van Dop (eds.), D. Reidel Publishing Company, Dordrecht, Holland.Google Scholar
  36. Ueda, H., Mitsumoto, S., and Komori, S.: 1981, ‘Buoyancy effects on the turbulent transport processes in the lower atmosphere’, Quart. J. R. Meteorol. Soc. 107, 561–578.CrossRefGoogle Scholar
  37. Van Ulden, A.P. and Holtslag, A.A.M.; 1983, ‘The stability of the atmospheric surface layer’, Preprint volume 6th symposium on turbulence and diffusion, March 1983, Boston, American Meteorological Society.Google Scholar
  38. Venkatram, A, : 1980, ‘Estimating the Monin-Obukhov length in the stable boundary layer for dispersion calculations’, Boundary-Layer Meteorol. 19, 481–485.CrossRefGoogle Scholar
  39. Wetzel, P.: 1982, ‘Toward parameterization of the stably boundary layer’, J. Appl. Meteorol. 21, 7–13.CrossRefGoogle Scholar
  40. Wyngaard, J.C.: 1973, ‘On surface layer turbulence’, Workshop on Micrometeorology. D.A. Haugen (ed.), American Meteorological Society, Boston.Google Scholar
  41. Yamada, T.: 1979, ‘PBL similarity profiles determined from a level-2 turbulence closure model’, Boundary-Layer Meteorol. 17, 333–351.CrossRefGoogle Scholar
  42. Yamamoto, S., Yokoyama, O. and Gamo, M.: 1979, ‘Observational study on the turbulent structure of the atmospheric boundary layer under stable conditions’, J. Meteorol. Soc. Japan 57, 423–431.Google Scholar
  43. Yu, T.: 1978, ‘Determining height of the nocturnal boundary layer’, J. Appl. Meteorol. 17, 28–33.CrossRefGoogle Scholar
  44. Zeman, O.: 1979, ‘Parameterization of the dynamics of stable boundary layers and nocturnal jets’, J. Atmos. Sci. 36, 792–804.CrossRefGoogle Scholar
  45. Zilitinkevich, S.S.: 1972, ‘On the determination of the height of the Ekman boundary layer’, Boundary-Layer Meteorol. 3, 141–145.CrossRefGoogle Scholar

Copyright information

© D. Reidel Publishing Company, Dordrecht, Holland 1984

Authors and Affiliations

  • F. T. M. Nieuwstadt
    • 1
  1. 1.Royal Netherlands Meteorological InstituteDe BiltThe Netherlands

Personalised recommendations