Skip to main content

Finite Euclidean and Non-Euclidean Geometry with Applications to the Finite Pendulum and the Polygonal Harmonic Motion. A First Step to Finite Cosmology

  • Conference paper
  • 150 Accesses

Abstract

Because the Universe is both finite and atomic it is desirable to have a geometry which satisfies most of the properties of Euclidean or non-Euclidean geometry for which the number of points on each line is finite. This paper presents essential features of such geometries. The beginning of finite mechanics is present through the application to the finite circular pendulum and to the harmonic polygonal motion, for which time is also discrete.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Neugebauer, O. and Sachs, A. 1945. Mathematical Cuneiform Texts, American Oriental Series 29 (American Oriental Society New Haven, Connecticut).

    MATH  Google Scholar 

  2. Aryabhata, 1930. The Aryabhatiya of Aryabhata, translated with notes by Walter Eugene Clark (University of Chicago Press, Chicago, Illinois).

    Google Scholar 

  3. Gauss, Carl, 1801. Disquisitiones Arithmeticae, Lipsiae, Fleicher. Translated by Arthur S. J. Clarke, 473 pp. (Yale University Press, New Haven, CT, 1966).

    Google Scholar 

  4. Veblen, O. and Young, J. 1910 and 1918. Projective Geometry, Vols. I and II. (Wesley, Boston).

    MATH  Google Scholar 

  5. Hensel, Kurt, 1908. Theorie der algebraischen Zahlen, 349 pp. (Teubner, Berlin)

    MATH  Google Scholar 

  6. Hensel, Kurt, 1913. Zahlentheorie, 356 pp. (Goeschen’sche Verslaghandlung).

    Google Scholar 

  7. Tate, J.T. 1972. The arithmetic of elliptic curves, 43 pp. Colloquium Dartmouth College, Hanover, NH, Aug.29 – Sept.1.

    Google Scholar 

  8. Dembowski, P. 1968. Finite Geometries, 375 pp. Ergebnisse der Mathematik und ihrer Grenzgebiete, Band 44 (Springer, New York).

    MATH  Google Scholar 

  9. von Staudt, K.G.C., 1847. Geometrie der Lage, Nuremberg

    Google Scholar 

  10. von Staudt, K.G.C., 1857. Beitrage zur Geometrie der Lage, Nuremberg.

    Google Scholar 

  11. Coxeter, H.S.M., 1949. The Real Projective Plane, 196 pp. (McGraw-Hill, New York).

    MATH  Google Scholar 

  12. Brianchon, Charles and Poncelet, Jean, 1820. See Smith, D.E., 1925, History of Mathematics, Vols. I, II.

    Google Scholar 

  13. DeVogelaere, Rene. Finite Euclidean and non-Euclidean Geometry, in preparation.

    Google Scholar 

  14. Grassman, Hermann G., 1896. Ausdehnungslehre, Gesamm. Math und Phys. Werke, Leipzig.

    Google Scholar 

  15. Forder, Henry G., 1960. The Calculus of Extension (Chelsea Publishing Co., New York).

    MATH  Google Scholar 

  16. Neuberg, Joseph, 1886. Memoire sur le tétraèdre, Mémoires couronnés de l’Académie de Belgique, Vol. 37, pp.3–72.

    Google Scholar 

  17. Bolyai, Janos, 1886. The science absolute of space independent of the truth and falsity of Euclid’s Axiom, XI. Translated by Dr. George Brus Halstead, Vol. 3, 71 pp. (The Neomon, Austin, Texas).

    Google Scholar 

  18. Lobachevskii, Nikolai I. See Norden, A., 1958. Elementare Einfuhrung in die Lobachewskische Geometrie, 259 pp. (VEB Deuscher Verlag der Wissenschaften, Berlin).

    Google Scholar 

  19. Casey, John, 1889. Geometrie Elementaire Récente. Mathesis 9, pp.5–70.

    Google Scholar 

  20. Lemoine, Emile, 1886. Propriétés relatives à deux points du plan d’un triangle qui se déduisent d’un point K quelconque du plan comme les points de Brocard se déduisent du point de Lemoine. Mathesis, Ser. 1, Vol. 6, Suppl. 1–27.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 D. Reidel Publishing Company, Dordrecht, Holland

About this paper

Cite this paper

De Vogelaere, R. (1984). Finite Euclidean and Non-Euclidean Geometry with Applications to the Finite Pendulum and the Polygonal Harmonic Motion. A First Step to Finite Cosmology. In: Berger, A. (eds) The Big Bang and Georges Lemaître. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-6487-7_29

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-6487-7_29

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-009-6489-1

  • Online ISBN: 978-94-009-6487-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics