Explicit Algebraic Nth Order Approximations to PI

  • J. M. Borwein
  • P. B. Borwein
Part of the NATO ASI Series book series (ASIC, volume 136)


We present a family of algorithms for computing pi which converge with order m (m any integer larger than one). Details are given for two, three and seven.


Elliptic Function General Iteration Modular Equation Complete Elliptic Integral Digit Correct 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Borwein, J. M., and Borwein, P. B., “Cubic and higher order algorithms for π”, to appear, Canad. Math. Bull.Google Scholar
  2. 2.
    Borwein, J. M., and Borwein, P. B., “Elliptic integral and approximation of π’. Preprint.Google Scholar
  3. 3.
    Borwein, J. M., and Borwein, P. B., “The arithmetic-geometric mean and fast computation of elementary functions”, SIAM Review, 26, 1984.Google Scholar
  4. 4.
    Brent, R. P., “Fast multiple-precision evaluation of elementary functions”, J. Assoc. Comput. Mach. 23, 1976, pp. 242–251.MathSciNetMATHGoogle Scholar
  5. 5.
    Cayley, A., “An elementary treatise on elliptic functions”, Bell and Sons, 1895, republished Dover 1961.MATHGoogle Scholar
  6. 6.
    Cayley, A., “A memoir on the transformation of elliptic functions”, Phil. Trans. T., 164, 1874, pp. 397–456.CrossRefGoogle Scholar
  7. 7.
    Salarnin, E., “Computation of π using arithmetic-geometric mean”, Math. Comput. 135, 1976, pp. 565–570.Google Scholar
  8. 8.
    Tamura, Y., and Kanada, Y., “Calculation of π to 4, 196, 293 decimals based on Gauss-Legendre algorithm”, preprint.Google Scholar

Copyright information

© D. Reidel Publishing Company 1984

Authors and Affiliations

  • J. M. Borwein
    • 1
  • P. B. Borwein
    • 1
  1. 1.Dalhousie UniversityCanada

Personalised recommendations