Skip to main content

X-Ray Absorption Spectroscopy across the Metal to Non-Metal Transition

  • Chapter
  • 650 Accesses

Part of the book series: NATO ASI Series ((ASIC,volume 130))

Abstract

The screening of the Coulomb potential in a polar fluid will be described and applied to Mx(NH3)1-x solutions. These undergo a metal to non-metal transition which is made evident in different physical properties near x = xc = 0.04.

Dedicated to Carol and Prof. M J Sienko, QEPD

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Abbreviations

MAS:

Metal Ammonia Solutions

XAS:

X-Ray Absorption Spectroscopy

XANES:

X-Ray Near Edge Absorption Spectroscopy

V:

Valence of absorber

Z:

Atomic number of absorber

A:

Absorbance of x-rays by a given material

Anm:

For nonmetals

As :

For semimetals

Am :

For metals

Ag :

For materials with overlapping bands

A0 :

For material near 0°K

A1 :

First order approximation (neglecting (l-f)f ≪ 1 and/or dg ≈ 0) A1 = A - Anm Absorbance below the edge E0

ν0 :

To the bottom of the conduction band

νF :

To the Fermi level

ν0 :

To the edge of the continuum of free states in non metals (E0= hν0) y = y(ν) = h(ν - ν0 0)2EFu-1 : dimensionless parameter which measures the photon energy from the bottom of the conduction band in units of a resonance line half width at half height (ħ/Tν = 2EF/u).

N(ν):

Density of states near E = hν above the 1s level of the absorber

Dν :

Relative intensity of resonance line near E = hν

2Eg :

Activation energy in simple semimetal

gc :

Mott ratio g measured near the mobility edge

References

  • Acrivos J V, Hathaway K, Robertson A C, Thompson A and Klein M P 1980, J. Phys. Chem., 84, 1206.

    Article  CAS  Google Scholar 

  • Acrivos J V, Hathaway K, Robertson A, Thompson A and Klein M P, J. Phys. Chem., 14, L557.

    Google Scholar 

  • Acrivos J V and Mott N F, 1971 Phil. Mag., 24, 19.

    Article  CAS  Google Scholar 

  • Acrivos J V and Pitzer K S, J. Phys. Chem., 66, 1693 (1962).

    Article  CAS  Google Scholar 

  • Acrivos J V, Robertson A S and Klein M P, “Ionic Liquids, Molten Salts and Polyelectrolytes”, Benneman Ed K, Brouers F and Quitman D, Springer-Verlag, 1982, p. 124.

    Chapter  Google Scholar 

  • Bourdillon A J, Pettifer R F and Marseglia E A, 1979, J. Phys. C: Solid State Phys., 12, 3889.

    Article  CAS  Google Scholar 

  • Cauchois Y and Mott N F, 1949, Phil. Mag., 40, 1250.

    Google Scholar 

  • Chieux P, Damay P, Dupuy J and J F, J. Phys. Chem., ibid, 84, 1211–1215 (1980).

    Google Scholar 

  • Cramer S P, Eccles T K, Kutzler F, Hodgson K O and Doniach S, 1976, J. Am. Chem. Soc., 98, 8059.

    Article  CAS  Google Scholar 

  • Fano U, 1961, Phys. Rev., 124. 1866.

    Article  CAS  Google Scholar 

  • Garroway A N and Cotts R M, “Electrons in Fluids”, Jortner J and Kestner N R, ed, Springer-Verlag, NY (1973), p. 213.

    Chapter  Google Scholar 

  • Gradshteyn I S and Ryzhik I M, 1965, Tables of Integrals (New York: Academic Press).

    Google Scholar 

  • Hahne S and Schindewolf U, 1975, J. Phys. Chem., 79, 2922.

    Article  CAS  Google Scholar 

  • Hartree D R, Kronig R de L and Petersen H, 1934, Physica 1, 895.

    Article  CAS  Google Scholar 

  • Kirby J A, Ph D Thesis, 1980, UC Berkeley.

    Google Scholar 

  • Kronig R de L, 1932, Z. Phys., 75, 191, 468.

    Article  CAS  Google Scholar 

  • Landau L D and Lifshitz E M, 1977, “Quantum Mechanics”, Pengamom, 3rd edition.

    Google Scholar 

  • McConnell H M and Holm C H, J. Phys. Chem., 26, 1517 (1957)

    Article  CAS  Google Scholar 

  • Lelieur J P, “Electrons in Fluids”, Jortner R and Kestner, ed, Springen-Verlag (1973), p. 305.

    Chapter  Google Scholar 

  • Moore C E, 1952, “Atomic Energy Levels”: NBS Circular 467.

    Google Scholar 

  • Mott N F, 1974, “Metal-Insulator Transitions”, Cambridge University Press.

    Google Scholar 

  • Parrat L G, 1939, Phys. Rev., 56, 295.

    Article  Google Scholar 

  • Ritchmyer F K, Barnes S W and Ramberg E, 1934, Phys. Rev., 46, 843.

    Article  Google Scholar 

  • Ruderman M A and Kittel C, Phys. Rev., 96, 99 (1954).

    Article  CAS  Google Scholar 

  • Schindewolf U and Werner M, J.Phys. Chem., 84, 1123–1127 (1980).

    Article  CAS  Google Scholar 

  • Sharp A C, Davis R L, Van der Hoff J A, Le Master E W and Thompson J C, 1971, Phys. Rev., 4A, 414.

    Google Scholar 

  • Shulman R G, Yafet Y, Eisenberger P and Blumberg W E, 1976, Proc. Nat. Acad. Sci., USA, 73, 1384.

    Article  CAS  Google Scholar 

  • Steinberg I V, Voronel A, Linsky D and Schindewolf U, Phys. Rev. Lett., 45, 1338 (1980).

    Article  CAS  Google Scholar 

  • Stern E A, Sayers D E and Lytle F W, 1975, Phys. Rev., 15B, 4836.

    Google Scholar 

  • Thompson J C, 1976, “Electrons in Liquid Ammonia” (Oxford: Clarendon).

    Google Scholar 

  • Thompson J C, 1977, “Solutions Metal Ammoniac” ed G Lepoutre and M J Sienko, p.307.

    Google Scholar 

  • Thompson J C, “Metal Ammonia Solutions”, Lepoutre and Sienko, ed. (1964), Benjamin, 306–313.

    Google Scholar 

  • Thouless D J, “Quantum Mechanics of Many Body Systems”, 2nd ed. (1972).

    Google Scholar 

  • Winter R, Schindewolf U and Voronel A, J. Phys. F, 11, L281 (1981).

    Article  CAS  Google Scholar 

  • Winter R and Schindewolf U, Ber. Bunsenges, Physik. Chem., 86, 1093, (1982).

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 D. Reidel Publishing Company

About this chapter

Cite this chapter

Acrivos, J.V. (1984). X-Ray Absorption Spectroscopy across the Metal to Non-Metal Transition. In: Acrivos, J.V., Mott, N.F., Yoffe, A.D. (eds) Physics and Chemistry of Electrons and Ions in Condensed Matter. NATO ASI Series, vol 130. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-6440-2_30

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-6440-2_30

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-009-6442-6

  • Online ISBN: 978-94-009-6440-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics