Skip to main content

Part of the book series: Atmospheric Sciences Library ((ASL))

  • 93 Accesses

Abstract

From the viewpoint of aeronomy, the atmosphere can be considered to be a mixture of gases exposed to the electromagnetic spectrum of the sun. An understanding of the dynamical and photochemical processes which occur in this environment requires consideration of atmospheric radiative transfer. For example, the rate of reaction between two constituents generally depends on the local temperature (see Chapter 2), which is a result of the effects of absorption, scattering, and emission of solar and terrestrial radiation. Further, solar radiation of particular energies can dissociate and ionize atmospheric molecules to produce reactive ions and radicals which participate in many of the important atmospheric chemical processes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Ackerman, M., Ultraviolet solar radiation released to mesospheric processes, pp. 149–159, in: Fiocco, G. (Ed.), Meaoapheric Modela and Related Experimenta, D. Reidel (Dordrecht, Holland ), 1971.

    Google Scholar 

  • Ackerman, M., F. Biaume, and M. Nicolet, Absorption in the spectral range of the Schumann-Runge Bands, Canad. J. Chem., 47, 1834, 1969.

    Google Scholar 

  • Allen, M. and J.E. Frederick, Effective photodissociation cross sections for molecular oxygen and nitric oxide in the Schumann-Runge Bands, J. Atmos. Sci., 39, 2066, 1982.

    Google Scholar 

  • Allen, M. and J.E. Frederick, Effective photodissociation cross sections for molecular oxygen and nitric oxide in the Schumann-Runge Bands, J. Atmos. Sci., 39, 2066, 1982.

    Google Scholar 

  • Arnold, J.O., E.E. Whiting and S.R. Langhoff, MCSF + Cl wevefunctions and properties of the X2H and A2II states of C1O, J. Chem. Phys., 86, 4459, 1977.

    Google Scholar 

  • Augustsson, T. and V. Ramanathan, A radiative-convective model study of the CO2 climate problem, J. Atmos. Sci., 34, 448, 1977.

    Google Scholar 

  • Banks, P., and G. Kockarts, Aeronomy, Academic Press, ( New York ), 1973.

    Google Scholar 

  • Bass, A.M. and A.H. Laufer, Extinction coefficients of ozomethane and dimethyl mercury in the near ultra-violet, J. Photochem., 2, 465, 1974.

    Google Scholar 

  • Bass, A.M., A. E. Ledford and A.H. Laufer, Extinction coefficients of NO2 and N204, J. Res. NBS, 80A, 143, 1976.

    Google Scholar 

  • Bass, A.M., L.C. Glasgow, C. Miller, J.P. Jesson and D.L. Filkin, Temperature dependent cross-sections for formaldehyde [CH2O]: The effect of formaldehyde on stratospheric chlorine chemistry, Planet. Sp. Sci., 28, 675, 1980.

    Google Scholar 

  • Bass, A.M. and R.J. Paur, UV absorption cross sectiosn for ozone: The temperature dependence, J. Photochem., 17, 141, 1981.

    Google Scholar 

  • Bates, D.R. and P.B. Hays, Atmospheric nitrous oxide, Planet. Sp. Sci., 15, 189, 1967.

    Google Scholar 

  • Baum, W.A., F.S. Johnson, J.J. Obserly, C.C. Rockwood, C.V. Strain, and R. Tousey, Solar ultraviolet spectrum to 88 kilometers, Phys. Rev., 70, 781, 1946.

    Google Scholar 

  • Bell, L., Notes on the absorption spectrum of nitrogen peroxide, Amer. Chem. J., 7, 32, 1885.

    Google Scholar 

  • Bethke, G.W., Oscillator strengths in the far ultraviolet, I. Nitric oxide, J. Chem. Phys., 31, 662, 1959.

    Google Scholar 

  • Biaume, F., Determination de la Valeur Absolute de l’absorption dans les bandes du systeme de Schumann-Runge de l’oxygene moleculaire, Aeronomica Acta, Brussels, A NO. 100, 1972a.

    Google Scholar 

  • Biaume, F., Structure de rotation des bandes 0–0 a 13–0 du systeme de Schumann-Runge de la molecule d’oxygene, Acad. Roy. Belg., Mem. Cl. Sci. Coll In -8 Deg., 2E Ser., Tome 40, Fascicule 2, 68 pp., 1972b.

    Google Scholar 

  • Biaume, F., Nitric acid vapour absorption cross-section spectrum and its photodissociation in the stratosphere, J. Photochem., 2, 139, 1973.

    Google Scholar 

  • Blake, A.J., J.H. Carver and G.N. Haddad, Photoabsorption cross-sections of molecular oxygen between 1250 A and 2350 A, J. Quant. Spect. Rad. Transf., 6, 451, 1966.

    Google Scholar 

  • Bossy, L. and M. Nicolet, On the variability of Lyman alpha with solar activity, Planet. Sp. Sci., 29, 907, 1981.

    Google Scholar 

  • Bossy, L., Solar indices and solar UV irradiances, Planet. Space Sci., 31, 977, 1983.

    Google Scholar 

  • Brasseur, G. and P.C. Simon, Stratospheric chemical and thermal response to long-term variability in solar UV irradiance, J. Geophys. Res., 86, 7343, 1981.

    Google Scholar 

  • Brasseur, G., A. De Rudder and P.C. Simon, Implication for stratospheric composition of a reduced absorption cross section in the Herzberg continuum of molecular oxygen, Geopys. Res. Lett., 10, 20, 1983.

    Google Scholar 

  • Brewer, A.W. and A.W. Wilson, Measurements of solar ultraviolet radiation in the stratosphere, Quart. J. Roy. Meteorol. Soc., 91, 452, 1965.

    Google Scholar 

  • Broadfoot, A.L., The solar spectrum 2100–3200 A, Astrophys. J., 173, 681, 1972.

    Google Scholar 

  • Brueckner, G.E., Solar radiometry: Spectral irradiance measurements, Adv. Space Res., 2, 177, 1983.

    Google Scholar 

  • Brusa, R.W. and C. Frohlich, Recent solar constant determinations from high altitude balloons, Paper presented at the Symposium on the Solar Constant and the Spectral Distribution of Solar Irradiance, IAMAP third Scientific Assembly, Published by the Radiation Commission, Boulder, CO, USA, 1982.

    Google Scholar 

  • Callear, A.B. and M.J. Pilling, Fluorescence of nitric oxide, 8. Predissociation and cascade quenching in NO D2E+ (v = 0) and NO C211 (v = 0), and the oscillator strengths of the o(0,0) and (0,0) bands, Trans. Faraday Soc., 66, 1886, 1970b.

    Google Scholar 

  • Carver, J.H., H.P. Gies, T.I. Hobbs, B.R. Lewis and D.G. McCoy, Temperature dependence of the molecular oxygen photoabsorption cross section near the H Lyman alpha line, J. Geophys. Res., 82, 1955, 1977.

    Google Scholar 

  • Castellano, E. and H.J. Schumacher, Die kinetik und der mechanismus des photochemischen ozonzerfalles im licht der wellenlange 313 nm, Z. Physik. Chem. Neue Folge, 65, 62, 1969.

    Google Scholar 

  • Cess, R.D., Radiative transfer due to atmospheric water vapor: Global considerations of the earth’s energy balance, J. Quant. Spectrosc. Radiat. Transfer, 14, 861, 1974.

    Google Scholar 

  • Cess, R.D., Climate change: An appraisal of atmospheric feedback mechanisms employing zonal climatology, J. Atm. Sci., 33, 1831, 1976.

    Google Scholar 

  • Cess, R.D. and V. Ramanathan, Radiative transfer in the atmosphere of Mars and that of Venus above the cloud deck, J. Quant. Spectrose Radiat. Transfer, 12, 933–945, 1972.

    Google Scholar 

  • Chandrasekhar, S., Radiative Trawler, Oxford University Press, Oxford, 1950 ( Reprinted by Dover Publ, ( New York ), 1960 ).

    Google Scholar 

  • Chang, J.S., J.R. Barker, J.E. Davenprot and D.M. Golden, Chlorine nitrate photolysis by a new technique: Very low pressure photolysis, Chem. Phys. Letters, 60, 385, 1979.

    Google Scholar 

  • Chapman, S., The absorption and dissociative or ionizing effect of monochromatic radiations in an atmosphere on a rotating earth, Proc. Phys. Soc., 43, 483, 1931.

    Google Scholar 

  • Chou, C.C., W.S. Smith, H. Vera Ruiz, K. Moe, G. Crescentini, J.J. Molinar and F.S. Rowland, The temperature dependence of the ultraviolet absorption cross sections of CCl2F2 and CC13F, and their stratospheric significance, J. Phys. Chem., 81, 1977.

    Google Scholar 

  • Chou, C.C., R.J. Milstein, W.S. Smith, H. Vera Ruiz, M.J. Molinar and F.S. Rowland, Stratospheric photodissociation of several saturated perhalo chiorofluorocarbon compounds in current technological use (Fluorocarbons -13, -113, -114 and -115), J. Phys. Chem., 82, 1, 1978.

    Google Scholar 

  • Cieslik, S. and M. Nicolet, The aeronomic dissociation of nitric oxide, Planet. Space Sci., 21, 925, 1973.

    Google Scholar 

  • Coulson, K.L., Solar and Terrestrial Radiation, Academic Press, ( New York ), 1975.

    Google Scholar 

  • Cox, R.A. and R.G. Derwent, The uttraviolet absorption spectrum of gaseous nitrous acid, J. Photochem., 6, 23, 1976.

    Google Scholar 

  • Cox, R.A. and K. Patrick, Kinetics of the reaction HO2 + NO2 (+M) HO2NO2 using molecular modulation spectrometry, Int. J. Chem. Kinetics, 11, 635, 1979.

    Google Scholar 

  • Coxon, J.A., Vibrational numbering in the AÎI state of CIO, J. Photochem., 5, 337, 1976.

    Google Scholar 

  • Coxon, J.A. and D.A. Ramsay, The A211–X211 band system of CIO reinvestigation of the absorption spectrum, Canad. J. Phys., 54, 1034, 1978.

    Google Scholar 

  • Coxon, J.A., RKR Franck-London factors and absorption cross-sections for rotational transitions in the A211 - X211 system of CIO, J. Photochem., 8, 439, 1977.

    Google Scholar 

  • Crutzen, P., Comment on paper “Absorption and emission by carbon dioxide in the mesosphere”, by J.T. Houghton, Quart. J. Roy. Met. Soc., 96, 767, 1970.

    Google Scholar 

  • Curtis, A.R., Discussion of a statistical model for water vapour absorption, Quart. J. Roy. Met. Soc., 78, 638, 1952.

    Google Scholar 

  • Curtis, A.R. and R.M. Goody, Thermal radiation in the upper atmosphere, Proc. Roy. Soc., A236, 193, 1956.

    Google Scholar 

  • Daimon, R., Recherches sur l’acide nitrique et ses solutions par les spectres d’absorption dans l’ultraviolet, Memoires des services de L’etat, Paris, 30, 141, 1943.

    Google Scholar 

  • Daumont, D., J. Brion and J. Malicet, Measurement of total atmospheric ozone: Consequences entailed by new values of 03 absorption cross sections at 223 K in the 310–350 nm spectral range, Planet. Space Sci., 31, 1229, 1983.

    Google Scholar 

  • Davenport, J.E., Determination of NO2 photolysis parameters for stratospheric modeling, Report No. FAA-EQ-78–14, 1978.

    Google Scholar 

  • De More, W.B. and M. Patapoff, Temperature and pressure dependence of CO2 extinction coefficients, J. Geophys. Res., 77, 6291, 1972.

    Google Scholar 

  • De More, W.B. and O.F. Raper, Reaction of O(1D) with nitrogen, J. Chem. Phys., 37, 2048, 1962.

    Google Scholar 

  • De More, W.B. and O.F. Raper, Primary processes in ozone photolysis, J. Chem. Phys., 44, 1780, 1966.

    Google Scholar 

  • Dickinson, R.E., Method of parameterization for infrared cooling between the altitudes of 30 and 70 km, J. Geophys. Res., 78, 4451, 1973.

    Google Scholar 

  • Dobson, G.M.B., Observera Handbook for the Ozone Spectrophotometer, Ann. IGU, V, 46, Pergamon Press, New York, 1957.

    Google Scholar 

  • Donner, L. and V. Ramanathan, Methane and nitrous oxide: Their effects on the terrestrial climate, J. Atmos. Sci., 37, 119, 1980.

    Google Scholar 

  • Dopplick, T.G., Radiative heating of the global atmosphere, J. Atmos. Sci., 29, 1278, 1972.

    Google Scholar 

  • Ditchburn, R.W. and P.A. Young, The absorption of molecular oxygen between 1850 and 2500 A, J. Atm. Terr. Phys., 24, 127, 1962.

    Google Scholar 

  • Duncan, A.B.F., The far ultraviolet absorption spectrum of N20, J. Chem. Phys., 4, 638, 1936.

    Google Scholar 

  • Edwards, D.K., Absorption of radiation by carbon monoxide gas according to the exponential wide-band model, Appl. Optics, 4, 1351, 1965.

    Google Scholar 

  • Ellingson, R.G. and J.C. Gille, An infrared radiative transfer model, I. model description and comparison of observations with calculations, J. Atmos. Sci., 35, 523, 1978.

    Google Scholar 

  • Ellis, J.S., Cloudiness: The planetary radiation budget and climate, Ph.D. Thesis, Dept. of Atmos. Sci., Colorado State Univ., Fort Collins.

    Google Scholar 

  • Elsasser, W.M., Heat transfer by infrared radiation in the atmosphere, Harvard Meteorological Studies, No. 6, Harvard Univ. Press, Cambridge, Mass., 1942.

    Google Scholar 

  • Elsasser, W.M., Mean absorption and equivalent absorption coefficient of a band spectrum, Phys. Rev., 54, 126, 1938.

    Google Scholar 

  • Elterman, L., UV, visible and IR attenuation for altitudes to 50 km, AFCRL Report 68–0153, Environ. Res. Papers, Bedford, MA, 1968.

    Google Scholar 

  • Fairchild, C.E., E.J. Stone and G.M. Lawrence, Photofragment spectroscopy of ozone in the UV region 270–310 nm and 600 nm, J. Chem. Phys., 69, 3632, 1978.

    Google Scholar 

  • Fang, T.M., S.C. Wofsy and A. Dalgarno, Capacity distribution functions and absorption in Schumann-Runge bands of molecular oxygen, Planet. Space Sci., 22, 413, 1974.

    Google Scholar 

  • Fiocco, G., A. Mugnai and W. Forlizzi, Effects of radiation scattered by aerosols on the photodissociation of ozone, J. Atom. Terr. Phys., 40, 949, 1978.

    Google Scholar 

  • Frederick, J.E. and R. D. Hudson, Predissociation of nitric oxide in the mesosphere and stratosphere, J. Atmos. Sci., 36, 737–745, 1979.

    Google Scholar 

  • Frederick, J.E., R.D. Hudson and J.E. Mental(, Stratospheric observations of the attenuated solar irradiance in the Schumann-Runge band absorption region of molecular oxygen, J. Geophys. Res., 86, 9885, 1981.

    Google Scholar 

  • Frederick, JE. and J.E. Mentall, Solar irradiance in the stratosphere: Implication for the Herzberg continuum absorption of 02, Geophys. Res. Lett., 9, 461, 1982.

    Google Scholar 

  • Frederick, J.E., R.B. Abrams and P.J. Crutzen, The delta band dissociation of nitric oxide: A potential mechanism for coupling thermospheric variations to the mesosphere and stratosphere, J. Geophys. Res., 88, 3829, 1983.

    Google Scholar 

  • Frohlich, C., Contemporary measures of the solar constant, pp. 93–109, in: White, O.R. (ed.), The Solar Output and itsVariation, University of Colorado Press, 1977.

    Google Scholar 

  • Froidevaux, L. and Y.L. Yung, Radiation and chemistry in the stratosphere: Sensitivity to 02 cross sections in the Herzberg continuum, Geophys. Res. Lett., 9, 854, 1982.

    Google Scholar 

  • Ghazi, A.V., V. Ramanathan and R.E. Dickinson, Acceleration of upper stratospheric radiative damping: observational evidence, Geophys. Res. Lett., 6, 437, 1979.

    Google Scholar 

  • Gibson, G.E. and N.S. Bayliss, Variation with temperature of the continuous absorption spectrum of diatomic molecules: Part I. Experimental absorption spectrum of chlorine, Phys. Rev., 44, 186, 1933.

    Google Scholar 

  • Gibson, G.E., O.K. Rice and N.S. Bayliss, Variation with temperature of the continuous absorption spectrum of diatomic molecules: Part II. Theoretical, Phys. Rev., 44, 193, 1933.

    Google Scholar 

  • Godson, W.L., The evaluation of infrared radiative fluxes due to atmosphere water vapour, Quart. J. Roy. Met. Soc., 79, 367, 1953.

    Google Scholar 

  • Goldstein, R. and F.N. Mastrup, Absorption coefficients of the 02 Schumann-Runge continuum from 1270 A to 1745 A using a new continuum source, 56, 765, 1966.

    Google Scholar 

  • Goodeve, C.F. and A.C.W. Taylor, The continuous absorption spectrum of hydrogen bromide, Proc. Roy. Soc., A152, 221, 1935.

    Google Scholar 

  • Goody, R.M., A statistical model for water-vapour absorption, Quart. J. Roy. Meteorol. Soc., 78, 165, 1952.

    Google Scholar 

  • Goody, R.M., Atmospheric radiation, I. Theoretical Basis, Oxford at the Clarendon Press, 1964.

    Google Scholar 

  • Graham, R.A. and H.S. Johnston, The photochemistry of NO3 and the kinetics of the N203–03 system, J. Phys. Chem., 82, 254, 1978.

    Google Scholar 

  • Graham, R.A., A.M. Wier and J.A. Pitts, Ultraviolet and infrared cross section of gas phase HO2NO2i Geophys. Res. Lett., 5, 909, 1978.

    Google Scholar 

  • Grant, I.P. and G.E. Hunt, Discrete space theory of radiative transfer, I. Fundamentals, Proc. Roy. Soc. London, A313, 183, 1969.

    Google Scholar 

  • Griggs, M., Absorption coefficients of ozone in the ultraviolet and visible regions, J. Chem. Phys., 49, 857, 1968.

    Google Scholar 

  • Groves, K.S. and A.F. Tuck, Strospheric 03-CO2 coupling in a photochemical-radiative column noel, I. Without chlorine chemistry, Quart. J. Roy. Met. Soc., 106, 125, 1980.

    Google Scholar 

  • Hall, T.C. and F.E. Blacett, Separation of the absorption spectra of NO2 and N204 in the range of 2400–5000 A, J. Chem. Phys., 20, 1745, 1952.

    Google Scholar 

  • Hansen, J.E., W.C. Wang and A.A. Lacis, Mount Agung eruption provides test of a global climatic perturbation, Science, 199, 1065, 1978.

    Google Scholar 

  • Hansen, J., D. Johnson, A. Lacis, S. Lebedeff, P. Lee, D. Rind, and G. Russell, Climate impact of increasing atmospheric carbon dioxide, Science, 213, 957, 1981.

    Google Scholar 

  • Harker, A.B., N. Ho and J.J. Ratto, Photodissociation quantum yield of NO2 in the region 375 to 420 nm, Chem. Phys. Letters, 50, 394, 1977.

    Google Scholar 

  • Hasson, V. and R.W. Nicholls, Absolute spectral absorption measurements on molecular oxygen from 2640–1920 A. II. Continuum measurements 2430–1920 A, J. Phys. B., 4, 1789, 1971.

    Google Scholar 

  • Hearn, A.G., The absorption of ozone in the ultraviolet and visible region of the spectrum, Proc. Phys. Soc., 79, 932, 1961.

    Google Scholar 

  • Heath, D.F. and M.P. Thekaekara, The solar spectrum between 1200 and 3000 A, in The Solar Output and Its Variations, Oran R. White, (ed.), Colorado Associated University Press, Boulder, Colorado, 193–212, 1979.

    Google Scholar 

  • Heath, D.F., A review of observational evidence for short and long term ultraviolet flux variability of the Sun, in Proceedings of the International Conference on Sun and Climate, Centre National D’Etudes Spatiales, p. 163, France, 1980.

    Google Scholar 

  • Henri, V. and S.A. Schou, Struktur und akitivierung der molekel des formaldehyds, eine analyse auf grund des ultrvioletten absorption-spektrums des dampfes, Zeit. Phys., 49, 774, 1928.

    Google Scholar 

  • Hering, W.S., C.N. Tonart and T.R. Borden, Ozone heating and radiative equilibrium in the lower stratosphere, J. Atmos. Sci., 29, 402, 1987.

    Google Scholar 

  • Herman, J.R. and J.E. Mental!, The direct and scattered solar flux within the stratosphere, J. Geophys. Res., 87, 1319, 1982a.

    Google Scholar 

  • Herman, J.R. and J.E. Mentall, 02 absorption cross section (187–225 nm) from stratospheric solar flux measurements, J. Geophys. Res. 87, 8967, 1982b.

    Google Scholar 

  • Heroux, L. and R.A. Swirbalus, Full-disk solar fluxes between 1230 and 1940 A, J. Geophys. Res. 81, 436, 1976.

    Google Scholar 

  • Herzberg, G., Ultraviolet absorption spectra of acetylene and formaldehyde, Trans. Faraday. Soc., 27, 378, 1931.

    Google Scholar 

  • Herzberg, L., in Physic, of the Earth’a upper atmosphere, Hines, C., I. Paghis, T. R. Hartz, and J. A. Fejer (eds.), Prentice Hall, (Englewood Cliffs, N. J. ), 1965.

    Google Scholar 

  • Hinteregger, H.E., Solar UV irradiance at wavelengths below 185 nanometers observed for sunspot cycle 21, EGS, Uppsala, 1981.

    Google Scholar 

  • Holt, R.B., C.K. McLane and O. Oldenberg, Ultraviolet absorption spectrum of hydrogen peroxide, J. Chem. Phys., 16, 225–229, 1948.

    Google Scholar 

  • Holt, R.B., C.K. McLane and O. Oldenberg, Ultraviolet absorption spectrum of hydrogen peroxide, Erratum: J. Chem. Phys., 18, 638, 1948.

    Google Scholar 

  • Holt, R.B. and O. Oldenberg, Role of hydrogen peroxide in the thermal combination of hydrogen and oxygen, J. Chem. Phys., 17, 1091, 1949.

    Google Scholar 

  • Houghton, J.T., Absorption and emission by carbon dioxide in the mesosphere, Quart. J. Roy. Met. Soc., 95, 1, 1969.

    Google Scholar 

  • Houghton, J.T., The Phyaica of Atmoapherea, Cambridge University Press (Cambridge), 1977.

    Google Scholar 

  • Hudson, R.D., V.L. Carter and J.A. Stein, An investigation of the effect of temperature on the Schumann-Runge absorption continuum of oxygen, 1580–910 A, J. Geophys. Res., 71, 2295, 1966.

    Google Scholar 

  • Hudson, R.D. and V.L. Carter, Absorption of oxygen at elevated temperatures (300 to 900 K) in the Schumann-Runge system, J. Opt. Soc. Amer., 58, 1621, 1968.

    Google Scholar 

  • Hudson, R.D., V.L. Carter and E.L. Breig, Predissociation in the Schumann-Runge band system of 02: Laboratory measurements and atmospheric effects, J. Geophys. Res., 74, 4079, 1969.

    Google Scholar 

  • Hudson, R.D. and S.H. Mahle, Photodissociation rates of molecular oxygen in the mesosphere and lower thermosphere, J. Geophys. Res., 77, 2902, 1972.

    Google Scholar 

  • Huffman, R.E., Y. Tanaka and J.C. Larrabee, Nitrogen and oxygen absorption cross sections in the vacuum ultraviolet, Disc. Faraday Soc., 37, 159, 1964.

    Google Scholar 

  • Hummel, J.R. and W.R. Kuhn, An atmospheric radiative-convective moel with interactive water vàpor transport and cloud development, Tellus, 33, 372, 1981.

    Google Scholar 

  • Inn, E.C.Y., K. Watanabe and M. Zelikoff, Absorption coefficients of gases in the vacuum ultraviolet: 3. CO2i J. Chem. Phys., 21, 1648, 1953.

    Google Scholar 

  • Inn, E.C.Y., Absorption coefficient of HCI in the region 1400 to 2200 A, J. Atmos. Sci., 32, 2375, 1975.

    Google Scholar 

  • Iribarne, J. V., and H. R. Cho, Atmospheric Physics, D. Reidel Publishing Company, ( Dordrecht, Holland ), 1980.

    Google Scholar 

  • Isaksen, I.S.A., K.H. Modtbo, J. Sunde and P.J. Crutzen, A simplified method to include the molecular scattering and reflection calculations of photon fluxes and photodissociation rates, Geophys. Norv. 31, 11, 1977.

    Google Scholar 

  • Johnson, F.S., J.D. Porcell, R. Tousey and K. Watanabe, Direct measurements of the vertical distribution of atmospheric ozone to 70 km altitude, J. Geophys. Res., 57, 157, 1952.

    Google Scholar 

  • Johnston, H.S., E.D. Morris, Jr and J. Van den Bogaerde, Molecular modulation kinetic spectrometry, C1OO and CIO radicals in the photolysis of chlorine in oxygen, J. Amer. Chem. Soc., 91, 7712–7727, 1969.

    Google Scholar 

  • Johnston, H.S. and R.A. Graham, Gas-phase ultraviolet spectrum of nitric acid vapor, J. Chem. Phys., 77, 62, 1973.

    Google Scholar 

  • Johnston, H.S. and R.A. Graham, Photochemistry of NO„ compounds, Canad. J. Chem., 52, 1415, 1974.

    Google Scholar 

  • Johnston, H.S. and G. Selwyn, New cross sections for the absorption of near ultraviolet radiation by nitrous oxide (N20), Geophys. Res. Lett., 2, 549, 1975.

    Google Scholar 

  • Jones, E.J. and O.R. Wulf, The absorption coefficient of nitrogen pentoxide in the ultraviolet and the visible absorption spectrum Nos, J. Chem. Phys., 5, 873, 1937.

    Google Scholar 

  • Jones, I.T.N. and K.D. Bayes, Photolysis of nitrogen dioxide, J. Chem. Phys., 59, 4836, 1973.

    Google Scholar 

  • Jones, I.T.N. and R.P. Wayne, The photolysis of ozone by ultraviolet radiation. V. Photochemical formation of 02 (16,g), Proc. Roy. Soc. London, A321, 409, 1971.

    Google Scholar 

  • Jourdan, J.L., G. Le Bras, G. Poulet, J. Combourieu, P. Rigaud and B. Leroy, UV absorption spectrum of CIO (A2II-X2II) up to the (1–0) band, Chem. Phys. Letters, 57, 109, 1978.

    Google Scholar 

  • Junge, C.E., Air Chemistry and Radioactivity, Academic Press (New York), 1963.

    Google Scholar 

  • Kajimoto, 0. and R.J. Cvetanovic, Temperature dependence of 0(’D) production in the photolysis of ozone at 313 nm, Chem. Phys. Letters, 37, 533, 1976.

    Google Scholar 

  • Kiehl, J.T. and V. Ramanathan, CO2 radiative parameterization used in climate models: Comparison with narrow band moels and with laboratory data, J. Geophys. Res., 88, 5191, 1983.

    Google Scholar 

  • Knauth, H.-D., H. Alberti and H. Clausen, Equilibrium constant of the gas reaction C12 + H2O = 2HOC1 and the ultraviolet spectrum of HOC !, J. Phys. Chem., 83, 1604, 1979.

    Google Scholar 

  • Kockarts, G., Penetration of solar radiation in the Schumann-Runge bands of molecular oxygen in Mesopheric Models and Related Experiment, ed. G. Fiocco, Reidel Publ. Co. (Dordrecht, Holland), 160–176, 1971.

    Google Scholar 

  • Kockarts, G., Absorption and photodissociation in the Schumann-Runge bands of molecular oxygen in the terrestrial atmosphere, Planet. Space Sci., 24, 589, 1976.

    Google Scholar 

  • Kondratyev, K.Y., Radiation in the Atmosphere, Academic Press ( New York, N.Y. ), 1969.

    Google Scholar 

  • Kourganoff, V., Basic Methods in Transfer Problems, Oxford University Press (London), 1952.

    Google Scholar 

  • Kuhn, W.R., and J. London, Infrared radiative cooling in the middle atmosphere (30–110 km), J. Atmos. Sci., 26, 189, 1969.

    Google Scholar 

  • Kuis, S., R. Simonaitis and J. Heicklen, Temperature dependence of the photolysis of ozone at 3130 A, J. Geophys. Res., 80, 1328, 1975.

    Google Scholar 

  • Lacis, A.A. and J.E. Hansen, A parameterization for the absorption of solar radiation in the Earth’s atmosphere, J. Atmos. Sci., 31, 118, 1974.

    Google Scholar 

  • Lambrey, M. and D. Chalonge, Structure de la bande ultraviolette de l’ozone, Gerl. Beitr. Geophys., 24, 42, 1929.

    Google Scholar 

  • Langhoff, J.R., J.P. Dix, J.O. Arnold, R.W. Nicholls and L.L. Danylewych, Theoretical intensity parameters for the vibration-rotation bands of CIO, J. Chem. Phys., 67, 4306, 1977.

    Google Scholar 

  • Langhoff, S.R., R.L. Jaffe and J.O. Arnold, Effective cross sections and rate constants for predissociation of CIO in the earth’s atmosphere, J. Quant. Spectrosc. Rad. Transfer, 18, 227, 1977.

    Google Scholar 

  • Lean, J.L. and A.J. Blake, The effect of temperature on thermospheric molecular oxygen absorption in the Schumann-Runge continuum, J. Geophys. Res., 86, 211, 1981.

    Google Scholar 

  • Lean, J.L., O.R. White, W.C. Livingston, D.F. Heath, R.F. Donnelly and A. Skumanisch, A three-component model of the variability of the solar ultraviolet flux: 145–200 nm, J. Geophys. Res., 87, 1037, 1982.

    Google Scholar 

  • Laufer, A.M. and J.R. Mcnesby, Deuterium isotope effect in vacuum ultraviolet absorption coefficients of water and methane, Canad. J. Chem., 43, 3487, 1965.

    Google Scholar 

  • Leifson, S.W., Absorption spectra of some gases and vapors in the Schumann region, Astrophys. J., 63, 73, 1926.

    Google Scholar 

  • Lenoble, J., Standard procedures to compute atmospheric radiative transfer in a scattering atmosphere, I.A.M.A.P., National Center for Atmospheric Research, Boulder, Colorado 80307, USA, 1977.

    Google Scholar 

  • Lenoble, J., Transfert radiatif, in Physique Moleculaire - Physique de L’Atmosphere, C. Camy-Peyret (ed.), Editions du CNRS, Paris, 1982.

    Google Scholar 

  • Lin, C.-L. and W.B. Demore, O(’D) production in ozone photolysis near 3100 A, J. Photochem., 2, 161–164, 1973.

    Google Scholar 

  • Lin, C.L., N.K. Rohatgi and W.B. Demore, Ultraviolet absorption cross sections of hydrogen peroxide, Geophys. Res. Letters, 5, 113, 1978.

    Google Scholar 

  • Liou, K-N., An Introduction to Atmospheric Radiation, Academic Press (New York, N.Y.), 1980.

    Google Scholar 

  • Liou, K-N. and S-C.S. Ou, Theory of equilibrium temperatures in radiative turbulent atmospheres, J. Atmos. Sci., 40, 214, 1983.

    Google Scholar 

  • London, J., In Proceedings of the Nato Advanced Institute on Atmospheric Ozone (Portugal), U.S. Dept. of Transportation, FAA - Washington, D.C., USA - No. FAA-EE-80–20, 1980.

    Google Scholar 

  • Luther, F.M. and R.J. Gelinas, Effect of molecular multiple scattering and surface albedo on atmosphere photodissociation rates, J. Geophys. Res., 81, 1125, 1976.

    Google Scholar 

  • Luther, F.M., D.J. Wuebbels, W.H. Buewer and J.C. Chang, Effect of multiple scattering on species concentrations and model sensitivity, J. Geophys. Res., 83, 3563, 1978.

    Google Scholar 

  • Magnotta, F. and H.S. Johnston, Photodissociation quantum yields for the NO3 free radical, Geophys. Res. Letters, 7, 769, 1980.

    Google Scholar 

  • Malkmus, W., Random Lorentz band model with exponential-tailed S-1 line intensity distribution function, J. Opt. Soc. Amer., 57, 323–329, 1967.

    Google Scholar 

  • Manabe, S. and F. Moller, On the radiative equilibrium and heat balance of the atmosphere: Mon. Weath. Rev., 89, 503, 1961.

    Google Scholar 

  • Manabe, S. and R.F. Strickler, Thermal equilibrium of the atmosphere with a convective adjustment, J. Atmos. Sci., 21, 361, 1964.

    Google Scholar 

  • Manabe, S. and R.T. Wetherald, Thermal equilibrium of the atmosphere with a given distribution of relative humidity, J. Atmos. Sci., 24, 241, 1967.

    Google Scholar 

  • Mandelman, M. and R.W. Nicholls, The absorption cross sections and F-values for the v*=0 progression of bands and associated continuum for the CIO (A2I1–X2I1) system, J. Quant. Spectrosc. Rad. Transfer, 17, 481, 1977.

    Google Scholar 

  • Marmo, F.F., Absorption coefficients of nitrogen oxide in the vacuum ultraviolet, J. Opt. Soc. Amer., 43, 1186, 1953.

    Google Scholar 

  • Martin, H. and R. Gareis, Die kinetik der reaktion von C1O2 mit NO2 in der loesungsphase, Zeit. Elektrochem., 60, 959, 1956.

    Google Scholar 

  • McCartney, E.J., Optics of the Atmosphere: Scattering by Molecules and Particles, Wiley ( New York, N.Y. ), 1976.

    Google Scholar 

  • McClatchey, R.A., et al., Optical properties of the atmosphere, 3rd ed., AFCRL-72–0497, Air Force Cambridge Research Labs, Bedford, Mass., 1972.

    Google Scholar 

  • McClatchey, R.S., R.W. Fenn, J.E.A. Selby, F.E. Volz and J.S. Garing, Optical properties of the atmosphere, AFCRL-71–0279, Air Force Cambridge Research Laboratories, 85 pp., Cambridge, MA, 1973.

    Google Scholar 

  • Meier, R.R., D.E. Anderson, Jr., and M. Nicolet, Radiation field in the troposphere and stratosphere from 240 to 1000 nm - I. General analysis, Planet. Space Sci., 30, 923, 1982.

    Google Scholar 

  • Metzger, P.H. and G.R. Cook, A reinvestigation of the absorption cross sectiosn of molecular oxygen in the 1050–1800 A region, J. Quant. Spectros. Rad. Trans., 4, 107, 1964.

    Google Scholar 

  • Mie, G., Beitrage zur optik trueber Medien, Speziell koloidaller metaloesungen, Ann. der Phys., 25, 377, 1908.

    Google Scholar 

  • Miescher, E., Rotationsanalyse der NO+ banden, HeIv. Phys. Acata, 29, 135, 1956a.

    Google Scholar 

  • Miescher, E., Rotationanalyse der B’-banden (2A-X211) des NO-molekuls, HeIv. Phys. Acta, 29, 401 1956b.

    Google Scholar 

  • Miescher, E., Excited NO levels, J. Opt. Soc. Amer., 49, 1130, 1959.

    Google Scholar 

  • Miescher, E., Spectrum and energy levels of the NO molecule, J. Quant. Spectros. Rad. Trans., 2, 421, 1962.

    Google Scholar 

  • Miescher, E., Analysis of the spectrum of nitric oxide molecule, Report AFCRL-69–0268, 1968.

    Google Scholar 

  • Miescher, E., The fine structure of the spectrum of the electronic NO laser, J. Mol. Spec., 53, 302, 1974.

    Google Scholar 

  • Milne, E.A., Handbuch der Astrophysik, 3, Part I, 1930 ( Reprinted in “Selected Papers on the Transfer of Radiation”, Dover, 1968 ).

    Google Scholar 

  • Mitchell, A.C.G. and W.M. Zemansky, Resonance Radiation and Excited Atoms, Harvard Univ. Press, Cambridge, MA, 1934 (Reprinted 1961 ).

    Google Scholar 

  • Molina, L.T., S.D. Schinke and M.J. Molina, Ultraviolet absorption spectrum of hydrogen peroxide vapor, Geophys. Res. Letters, 4, 580, 1977.

    Google Scholar 

  • Molina, L.T. and M.J. Molina, Ultraviolet spectrum of HOC1, J. Phys. Chem., 42, 2410, 1978.

    Google Scholar 

  • Molina, L.T. and M.J. Molina, Chlorine nitrate ultraviolet absorption spec- trum at stratospheric temperatures, J. Photochem., 11, 139–144, 1979.

    Google Scholar 

  • Molina, L.T. and M.J. Molina, J. Photochem., 15, 97, 1981.

    Google Scholar 

  • Moortgat, G.K., E. Kudszus and P. Warneck, Temperature dependence of O(1D) formation in the near UV photolysis of ozone, J. Chem. Soc., Faraday Trans 11, 73, 1216, 1977.

    Google Scholar 

  • Moortgat, G.K. and P. Warneck, Relative O(MD) quantum yields in the near UV photolysis of ozone at 298 K, Naturforsch., 30A, 835, 1975.

    Google Scholar 

  • Moortgat, G.K. and P. Warneck, CO and H2 quantum yields in the photo- decomposition of formaldehyde in air, J. Chem. Phys., 70, 3639, 1979.

    Google Scholar 

  • Mount, G.H., G.J. Rottman, and J.G. Thimothy, The solar spectral irradiance 1200–2550 A at solar maximum, J. Geophys. Res., 85, 4271, 1980.

    Google Scholar 

  • Mount, G.H. and G.J. Rottman, The solar spectral irradiance 1200–1284 A near solar maximum: July 15, 1980, Geophys. Res. Letters, 86, 9193, 1981.

    Google Scholar 

  • Mount, G.H. and G.J. Rottman, The solar absolute spectral irradiance 11503173 A: 17 May 1982, J. Geophys. Res., 88, 5403, 1983.

    Google Scholar 

  • Murgatroyd, R.J. and R.M. Goody, Sources and sinks of radiative energy from 30 to 90 km, Quart. J. Roy. Met. Soc., 84, 225, 1958.

    Google Scholar 

  • Nakayamat, T., M.Y. Kitamura and K. Watanabe, Ionization potential and absorption coefficients of nitrogen dioxide, J. Chem. Phys., 30, 1180, 1959.

    Google Scholar 

  • Neckel, H. and D. Labs, Improved data of solar spectral irradiance from 0.33 to 1.25 microns, Solar Phys., 74, 231, 1981.

    Google Scholar 

  • Nicolet, M., Photodissociation of nitric oxide in the mesosphere and stratosphere: Simplified numerical relations for atmosphere model calculation, Geophys. Res. Letters, 6, 866, 1979.

    Google Scholar 

  • Nicolet, M., The chemical equations of stratospheric and mesopheric ozone, Proceedings of Nato Advanced Study Institute on Atmospheric Ozone (Portugal), edited by US Dept. of Transportation, FAA Washington, D.C., USA, Rapport No. FAA-EE-80–20, 1980.

    Google Scholar 

  • Nicolet, M. and S. Cieslik, The photodissociation of nitric oxide in the mesophere and stratosphere, Planet. Space Sci., 28, 105, 1980.

    Google Scholar 

  • Nicolet, M. and W. Peetermans, Atmospheric absorption in the 02 Schumann-Runge band spectral range and photodissociation rates in the stratosphere and mesophere, Planet. Space Sci., 28, 85, 1980.

    Google Scholar 

  • Nicolet, M., The photodissociation of water vapor in the rr~sophere, J. Geophys. Res., 86, 5203, 1981.

    Google Scholar 

  • Nicolet, M., R.R. Meier, and D.E. Anderson, Radiation field in the troposphere and stratosphere - II. Numerical analysis, Planet. Space Sci., 30 935, 1982.

    Google Scholar 

  • Nicolet, M., R.R. Meier, and D.E. Anderson, Radiation field in the troposphere and stratosphere - II. Numerical analysis, Planet. Space Sci., 30 935, 1982.

    Google Scholar 

  • Norrish, R.G.W. and F.N. Kirkbride, Primary photochemical processes, Part I. The decomposition of formaldehyde, J. Chem. Soc., pp. 1518–1530, 1932.

    Google Scholar 

  • Ogawa, M., Absorption cross sections of 02 and CO2 continua in the Schumann-Runge and far-UV regions, J. Chem. Phys. Letters, 9, 603, 1971.

    Google Scholar 

  • Ogawa, S. and M. Ogawa, Absorption cross section of 02 (A1Ag) and 02 (X3Og) in the region from 1087 to 1700 A., Canad. J. Phys., 53, 1845, 1975.

    Google Scholar 

  • Owens, A.J., C.H. Hales, D.L. Filkin, C. Miller, A. Yokozeki, J.M. Steed and J.P. Jesson, A coupled one-dimensional radiative-convective chemistry - transport moel of the atmosphere, I. Model structure and steady state perturbation calculations, manuscript

    Google Scholar 

  • Park, J.H., The equivalent mean absorption cross sections for the 02 Schumann-Runge bands: Aplication to the H2O and NO photodissociation rates, J. Atmos. Sci., 312, 1893, 1974.

    Google Scholar 

  • Penndorf, R., Tables of the refractive index for standard air and the Rayleigh scattering coefficient for the spectral region between 0.2 and 20.0 pm and their application to atmospheric optics, J. Opt. Soc. Am., 47, 176, 1957.

    Google Scholar 

  • Perner, D., and U. Platt, Absorption of light in the atmosphere by collision pairs of oxygen (02)2, Geophys. Res. Lett., 7, 1053, 1980.

    Google Scholar 

  • Ramanathan, V., Radiative transfer within the Earth’s troposphere and stratosphere: A simplified radiative-convective model, J. Atmos. Sci., 33, 1330, 1976.

    Google Scholar 

  • Ramanathan, V. and J.A. Coakley, Climate modeling thrcugh radiative convective models, Rev. Geophys. Space Phys., 16, 465, 1978.

    Google Scholar 

  • Ramanathan, V., E.J. Pitcher, R.C. Malone and M.L. Blackmon, The response of a spectral general circulation model refinements in radiative processes, J. Atmos. Sci., 40, 805, 1983.

    Google Scholar 

  • Rasool, S.I. and S.H. Schneider, Atmospheric carbon dioxide and aerosols effects of large increases on global climate, Science, 173, 138, 1971.

    Google Scholar 

  • Richards, P.G., D.G. Torr, and M.A. Torr, Photodissociation of N2: A significant source for thermospheric atomic nitrogen, J. Geophys. Res., 86, 1495, 1981.

    Google Scholar 

  • Robbins, D.E., Photodissociation of methyl chloride and methyl bromide in the atmosphere, Geophys. Res. Letters, 3, 213, 1976a, and Erratum: Ibid, 757, 1976b.

    Google Scholar 

  • Rodgers, C.D. and C.D. Walshaw, The computation of infra-red cooling rate in planetary atmospheres, Quart. J. Roy. Met. Soc., 92, 67, 1966.

    Google Scholar 

  • Romand, J. and B. Vodar, Spectre d’absorption de la’acide chlorhydrique gazeux dans la region de Schumann, C.R. Acad. Sci. Paris, 226, 238, 1948.

    Google Scholar 

  • Romand, J. and Mayence, J., Spectre d’absorption de l’oxyde azoteux gazeux dans la region de Schumann, C.R. Acad. Sci. Paris, 228, 998, 1949.

    Google Scholar 

  • Rothman, L.S., A. Goldman, J.R. Gillis, R.H. Tipping, L.R. Brown, J.S. Margolis, A.G. Maki and L.D.G. Young, AFGL trace gas compilation: 1980 version, Appl. Opt., 20, 1323, 1980.

    Google Scholar 

  • Rottman, G., Personal communication, 1981.

    Google Scholar 

  • Rottman, G., C. Barth, R. Thomas, G. Mount, G. Lawrence, D. Rusch, R. Saunders, G. Thomas and J. London, Solar spectral irradiance, 120 to 190 nm, October 13, 1981 - January 3, 1982, Geophys. Res. Letters, 9, 587, 1982.

    Google Scholar 

  • Rottman, G.J., 27-day variations observed in solar ultraviolet (120–300 nm) irradiance, Planet. Space Sci., 31, 1001, 1983.

    Google Scholar 

  • Rowland, F.S., and M.J. Molina, Chlorofluoromethanes in the enviornment, Rev. Geophys. Space Phys., 13, 1, 1975.

    Google Scholar 

  • Rowland, F.S., J.E. Spencer and M.J. Molina, Stratospheric formation and photolysis of chlorine nitrate, J. Phys. Chem., 80, 2711, 1976.

    Google Scholar 

  • Samain, D. and P.C. Simon, Solar flux determination in the spectral range 150–210 nm, Solar Phys., 49, 33, 1976.

    Google Scholar 

  • Schoeberl, M.R. and D.F. Strobel, The zonally averaged circulation of the middle atmosphere, J. Atmos. Sci., 35, 577, 1978.

    Google Scholar 

  • Schurgers, M. and K.H. Welge, Absorptionskoeffizient von 11202 und N2H4 zwischen 1200 und 2000 A, Zeit. Naturforsch., 23A, 1508, 1968.

    Google Scholar 

  • Seery, D.J. and D. Britton, The continuous absorption spectra of chlorine, bromine, bromide chloride, iodine chloride and iodine bromide, J. Phys. Chem., 68, 2263, 1964.

    Google Scholar 

  • Shardanand, and A.D. Prasad-Rao, Collision-induced absorption of 02 in the Herzberg continuum, J. Quant. Spectrosc. Radiat. Transfer, 17, 443, 1977.

    Google Scholar 

  • Shemansky, D.E., CO2 extinction coefficient 1700–3000 A, J. Chem. Phys., 56, 1582, 1972.

    Google Scholar 

  • Simon, P.C., Solar irradiance between 120 and 400 nm and its variations, Solar Phys., 74, 273, 1982.

    Google Scholar 

  • Simon, P.C., R. Pastiels and D. Nevejans, Balloon observations of solar ultra- violet irradiance at solar minimum, Planet. Space Sci., 30, 67, 1982a.

    Google Scholar 

  • Simon, P.C., R. Pastiels, D. Nevejans and D. Gillotay, Balloon observatiosn of solar ultraviolet irradiance during solar cycle 21, in Proceedings of the Symposium on the Solar Constant and the Spectral Distribution of Solar Irradiance (J. London and C. Frohlich, ed.), p. 95, IAMAP, Third Scientific Assembly, Boulder, CO, USA, 1982b.

    Google Scholar 

  • Simonaitis, R., S. Braslaysky, J. Heicklen and M. Nicolet, Photolysis of Os at 3130 A, Chem. Phys. Lett., 19, 601, 1973.

    Google Scholar 

  • Simons, J.W., R.J. Paur, H.A. Webster, III and E.J. Bair, Ozone ultraviolet photolysis, IV. The ultraviolet spectrum, J. Chem. Phys., 59, 1203, 1973.

    Google Scholar 

  • Simpson, C.J.S.M., P.D. Gait and J.M. Simmie, The vibrational deactivation of the bending moe of CO2 by 02 and by N2, Chem. Phys. Lett., 47, 133, 1977.

    Google Scholar 

  • Smith, E.V.P. and D.M. Gottlieb, Solar flux and its variations, Space Sci. Rev., 16, 771, 1974.

    Google Scholar 

  • Smith, W.S., C.C. Chou and F.S. Rowland, The mechanism for ultraviolet photolysis of gaseous chlorine nitrate at 302.5 nm, Geophys. Res. Letters, 4, 517, 1977.

    Google Scholar 

  • Sobolev, V.V., A Treatise of Radiative Transfer, D. Van Nostrand ( Princeton, N.J. ), 1963.

    Google Scholar 

  • Spencer, J.E. and F.S. Rowland, Bromine nitrate and its stratospheric significance, J. Phys. Chem., 82, 7, 1978.

    Google Scholar 

  • Stockwell, W.R. and J.C. Calvert, The near ultraviolet absorption spectrum of gaseous HONO and N204, J. Photochem., 8, 193, 1978.

    Google Scholar 

  • Stolarski, R.S. and R.J. Cicerone, Stratospheric chlorine, A possible sink for ozone, Can. J. Chem., 52, 1610, 1974.

    Google Scholar 

  • Stone, P. and J. Carlson, Atmospheric lapse rate regimes and their parameterization, J. Atmos. Sci., 36, 415, 1976.

    Google Scholar 

  • Swider, W. and M.E. Gardner, On the accuracy of certain approximations for the Chapman function, Environmental Research Papers No. 272, Air Force Cambridge Research, Bedford, MA, USA, 1967.

    Google Scholar 

  • Sze, N.D. and M.K.W. Ko, The effects of the rate for OH + HNO3 and HO2NO2 photolysis on stratospheric chemistry, Atmos. Environm., 15, 1301, 1981.

    Google Scholar 

  • Tanaka, Y., E.C.Y. Inn and K. Watanabe, Absorption coefficients of gases in the vacuum ultraviolet, Part IV. Ozone, J. Chem. Phys., 21, 1651, 1953.

    Google Scholar 

  • Taube, H., Photochemical reactions of ozone in solution, Trans. Faraday Soc., 53, 857, 1957.

    Google Scholar 

  • Thompson, B.A., P. Harteck and R.R. Reeves, Jr., Ultraviolet absorption coefficients of CO2 CO, 02, H20, N20, NH3, NO, SO2 and CH4 between 1850 and 4000 A, J. Geophys. Res., 68, 6431, 1963.

    Google Scholar 

  • Tiwari, S.N., Models for infrared atmospheric radiation, Adv. Geophys., 20, 1, 1978.

    Google Scholar 

  • Turco, R.P., R.C. Whitten, O.B. Toon, E.C.Y. Inn and P. Hamil, Stratospheric hydroxyl radical concentrations: New limitations suggested by observations of gaseous and paticulate sulfur, J. Geophys. Res., 86, 1129, 1981.

    Google Scholar 

  • Urey, H.C., L.C. Dawsey and F.O. Rice, The absorption spectrum and decomposition of hydrogen peroxide by light, J. Amer. Chem. Cos., 51, 1371, 1929.

    Google Scholar 

  • Valley, S.L. (ed.), Handbook of Geophysics and Space Environment, Air Force Cambridge Research Laboratory, 1965.

    Google Scholar 

  • Van de Hu1st, H.C. Light Scattering by Small Particles, Wiley, (New York), 1957

    Google Scholar 

  • Van Laethem-Meuree, N., J. Wisemberg and P.C. Simon, Absorption des chloromethanes dans l’ultraviolet: Mesures des sections efficaces d’absorption en fonction de la temperature, Bull. Acad. Roy. Belgique, Cl. Sci., 64, 34, 1978a.

    Google Scholar 

  • Van Laethem-Meuree, N., J. Wisemberg and P.C. Simon, Influence de la temperature sur les sections efficaces d’absorption des chlorofluoromethanes dans l’ultraviolet, Bull. Acad. Roy. Belgique, Cl. S i., 64, 42, 1978b.

    Google Scholar 

  • Vernazza, J., E. H. Avrett, and R. Loeser, Structure of the solar chromosphere. II. The underlying photosphere and temperature minimum region, Astrophys. J., 30, 1, 1976.

    Google Scholar 

  • Vidal-Madjar, A., The solar spectrum at Lyman Alpha, in the Solar Output and its Variation (edited by O. White), p. 2313, Colorado Associated University Press, Boulder, Colorado, USA, 1977.

    Google Scholar 

  • Vigroux, E., Mesures absolues des coefficients d’absorption de l’ozone dans la region des bandes de Huggins, A 18 degrés, C.R. Acad. Sci. Paris, 234, 2351, 1952a.

    Google Scholar 

  • Vigroux, E., Absorption de l’ozone dans la region des bandes de Huggins, influence de la temperature, C.R. Acad. Sci. Paris, 234, 2439, 1952b.

    Google Scholar 

  • Vigroux, E., Contribution experimentale de l’absorption de l’ozone, Ann. Phys., Paris, 12eme Serie, 8, 709, 1953.

    Google Scholar 

  • Vigroux, E. Coefficients d’absorption de l’ozone dans la bande de Hartley, Ann. Geophys., 25, 169, 1969.

    Google Scholar 

  • Vodar, M.B., Spectre d’absorption ultraviolet du gaz chlorhydrique et courbe d’energie potentielle de l’etat excite de la molecule C1H, J. Phys. Rad., 9, 166, 1948.

    Google Scholar 

  • Wang, W.C., W.B. Rossow, M.S. YaO and M. Wolfson, Climate sensitivity of a one-dimensional radiative-convective model with cloud feedback, J. Atmos. Sci., 38, 1167, 1981.

    Google Scholar 

  • Wang, W.C. and P.H. Stone, Effect of ice-albedo feedback on global sensitivity in a one-dimensional radiative-convective climate model, J. Atmos. Sci., 37, 545, 1980.

    Google Scholar 

  • Watanabe, K. and F.F. Marmo, Photoionization and total absorption cross section of gases, II. 02 and N2 in the region 850–1500 A, J. Chem. Phys., 25, 965, 1956.

    Google Scholar 

  • Watanabe, K. and M. Zelikoff, Absorption coefficient of water vapor in the vacuum ultraviolet, J. Opt. Soc. Amer., 43, 753, 1953.

    Google Scholar 

  • Watanabe, K., E.C. Inn and M. Zelikoff, Absorption coefficients of oxygen in the vacuum ultraviolet, J. Chem. Phys., 21, 1028, 1953.

    Google Scholar 

  • Watson, R.T., Rate constants for reactions of CIO of atmospheric interest, J. Phys. Chem. Ref. Data, 8, 871, 1977.

    Google Scholar 

  • Williams, A.P., Relaxation of the 2.7 micron and 4.3 micron bands of carbon dioxide, in Mesospheric modela and related Experiments, Reidel Publishing Company, 177, 1971.

    Google Scholar 

  • Williams, A.P. and C.D. Rodgers, Radiative transfer by the 15 miron CO2 band in the mesophere, Proceedings of the International Radiation Symposium, Sendai, Japan, 253–260, 26 May-2 June 1972.

    Google Scholar 

  • Wiscombe, W.J., Extension of the doubling method to inhomogeneous sources, J. Quant. Spectrosc. Radiat. Transfer, 18, 477, 1976a.

    Google Scholar 

  • Wiscombe, W.J., On initialization, error and flux conservation in the doubling method, J. Quant. Spectrosc. Radiat. Transfer, 16, 637, 1978b

    Google Scholar 

  • WMO (World Meteorological Organization), The stratosphere 1981: theory and measurements, Report no. 11, Geneva, Switzerland, 1982.

    Google Scholar 

  • Wyatt, P.J., V.R. Stull and G.N. Plass, Quasi-random model of band absorption, J. Opt. Soc. Amer., 52, 1209, 1962.

    Google Scholar 

  • Yao, F., I. Wilson and H. Johnston, Temperature dependent ultraviolet absorption spectrum for dinitrogen pentoxide, J. Phys. Chem., 86, 3811, 1982.

    Google Scholar 

  • Zeilik, M., Astronomy: the evolvinguniverse, Prentice Hall, ( Englewood Cliffs, New Jersey ), 1965.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1984 D. Reidel Publishing Company, Dordrecht, Holland

About this chapter

Cite this chapter

Brasseur, G., Solomon, S. (1984). Radiation. In: Aeronomy of the Middle Atmosphere. Atmospheric Sciences Library. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-6401-3_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-6401-3_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-009-6403-7

  • Online ISBN: 978-94-009-6401-3

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics