Advertisement

The Ne-Na Cycle and the 12C+α Reaction

  • H. P. Trautvetter
  • J. Görres
  • K. U. Kettner
  • C. Rolfs
Part of the Astrophysics and Space Science Library book series (ASSL, volume 109)

Abstract

Some problems concerning the measurement of reaction rates involving charged particle reactions are indicated in Fig. 1. For a nondegenerate gas the energy distribution of the particles follows the Maxwell-Boltz-man law. The maximum of such a distribution is reached e.g. for T = 15 × 106 °K at kT = 1.3 keV. For this reason a nuclear reaction relevant to stellar burning proceeds far below the Coulomb barrier and its energy dependence is hence controlled by the barrier penetrability. In folding those two functions one obtains the so-called Gamow peak (Fig. 1) whose integral represents the non-resonant reaction rate. The effective energy is higher than kT and amounts to e.g. Eeff =5.9 keV for the p+p reaction at T = 15 × 106 °K. This is still much too low for any direct yield measurement using present techniques.

Keywords

Coulomb Barrier Resonance Strength Direct Capture High Energy Tail 23Na Reaction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Becker, H.W., Kieser, W.E., Rolfs, C., Trautvetter, H.P. and Wiescher, M., 1982, Z. Phys. A, 305, 319.CrossRefADSGoogle Scholar
  2. Black, D.C., 1972, Geochim. Cosmochim. Acta 36, 377.CrossRefADSGoogle Scholar
  3. Dyer, P., and Barnes, C.A., 1974, Nucl. Phys., A233, 495.ADSGoogle Scholar
  4. Endt, P.M., and VanderLeun, C., 1978, Nucl. Phys. A310, 1.ADSGoogle Scholar
  5. Fowler, W.A., Caughlan, G.R., and Zimmermann, B.A., 1975, Ann. Rev. Astron. and Astrophys. 13, 69.CrossRefADSGoogle Scholar
  6. Görres, J., Rolfs, C., Schmalbrock, P., Trautvetter, H.P., and Keinonen, J., 1982, Nucl. Phys. A385, 57.ADSGoogle Scholar
  7. Görres, J., Becker, H.W., Buchmann, L., Rolfs, C., Schmalbrock, P., Trautvetter, H.P., Vliecks, A., Hammer, J.W., and Donoghue, T.R., submitted to Nucl. Phys. A.Google Scholar
  8. Hillebrandt, W., and Thielemann, F.K., 1982, Astrophys. J. 255, 617.CrossRefADSGoogle Scholar
  9. Jaszczak, R.J., Gibbons, H.H., and Macklin, R.L., 1970, Phys. Rev. C2, 63 and 2452.Google Scholar
  10. Kettner, K.U., Becker, H.W., Buchmann, L., Görres, J., Kräwinkel, H., Rolfs, C., Schmalbrock, P., Trautvetter, H.P., and Vlieks, A., 1982, Z. Phys. A308, 73.ADSGoogle Scholar
  11. Koonin, S.E., Tombrello, T.A., Fox, G., 1974, Nucl. Phys. A220, 221.ADSGoogle Scholar
  12. Rolfs, C., Rodney, W.S., Shapiro, M.H., and Winkler, H., 1975, Nucl. Phys. A241, 460.ADSGoogle Scholar
  13. Zyskind, J., Rios, M., and Rolfs, C., 1981, Astrophys. J. Lett. 243, L53 and 245, L97.CrossRefADSGoogle Scholar

Copyright information

© D. Reidel Publishing Company 1984

Authors and Affiliations

  • H. P. Trautvetter
    • 1
  • J. Görres
    • 1
  • K. U. Kettner
    • 1
  • C. Rolfs
    • 1
  1. 1.Institut für KernphysikUniversity MünsterWest Germany

Personalised recommendations