Presupernova Yields and Their Dependence on the 12C(α,γ)16O Reaction

  • W. David Arnett
  • F.-K. Thielemann
Part of the Astrophysics and Space Science Library book series (ASSL, volume 109)


Massive stars (M ≳ 20 M⊙) produce abundance patterns during the high temperature shell burning phases of hydrostatic evolution before the core collapse which are little changed by explosive processing of the ejected envelope in a type II supernova explosion. Thus a prediction for presupernova abundances can be taken as an approximation to the final products of explosive nucleosynthesis. A calculation using a detailed nucleosynthesis network (254 nuclear species), which adds shell burning products at typical burning conditions (temperature, density) weighted in mass according to stellar evolution calculations, reproduces the qualitative behavior of previous yield curves from postprocessing calculations, including the (too) large enhancement of carbon burning products and (too) small enhancement of oxygen burning products. When the 12C(α,γ)16O rate is increased, as indicated by recent experiments, this leads to a lower 12C and higher 16O abundance after core helium burning. Consequently the subsequent burning phases give less carbon burning products and more oxygen (and silicon) burning products. These changes are shown to lead to a uniform enhancement of nucleosynthesis products (2 < Z ≲ 32 at least) from an “average” type II supernova.


Burning Product Massive Star Supernova Explosion Burning Phasis Core Collapse 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Arnett, W.D.: 1972, Ap. J. 176, 681.CrossRefADSGoogle Scholar
  2. Arnett, W.D.: 1977, Ap. J. Suppl. 35, 145.CrossRefADSGoogle Scholar
  3. Arnett, W.D., Wefel, J.P.: 1978, Ap. J. (Letters) 224, L139.CrossRefADSGoogle Scholar
  4. Arnould, M., Nørgaard, H.: 1978, Astron. Astrophys. 64, 195.ADSGoogle Scholar
  5. Fowler, W.A.: 1981, private communication.Google Scholar
  6. Fowler, W.A., Caughlan, G.R., Zimmerman, B.A.: 1975, Ann. Rev. Astron. Astrophys. 13, 69.CrossRefADSGoogle Scholar
  7. Fuller, G.M., Fowler, W.A., Newman, M.J.: 1982, Ap. J. Suppl. 48, 279.CrossRefADSGoogle Scholar
  8. Kettner, K.U., Becker, H.W., Buchmann, L., Görres, J., Kräwinkel, H., Rolfs, C., Schmalbrock, P., Trautvetter, H.P., Vlieks, A.: 1982, Z.Physik A308, 73.ADSGoogle Scholar
  9. Langanke, K., Koonin, S.E.: 1983, submitted to Nucl. Phys. A.Google Scholar
  10. Seelmann-Eggebert, W., Pfennig, G., Münzel, H., Klewe Nebening, H.: 1981 “Chart of the Nuclides”, Kernforschungszentrum Karlsruhe.Google Scholar
  11. Thielemann, F.-K.: 1980, Ph.D. thesis, TH Darmstadt and MPI München, unpublished.Google Scholar
  12. Thielemann, F.-K., Arnett, W.D.: 1983, in preparation.Google Scholar
  13. Weaver, T.A., Woosley, S.E.: 1980, Ann. N.Y. Acad. Sci. 336, 335.CrossRefADSGoogle Scholar
  14. Weaver, T.A., Zimmerman, G., Woosley, S.E.: 1978, Ap. J. 225, 1021.CrossRefADSGoogle Scholar
  15. Woosley, S.E., Holmes, J.A., Fowler, W.A., Zimmerman, B.A.: 1978, Atomic Data Nuc. Data Tables 22, 371.CrossRefADSGoogle Scholar
  16. Woosley, S.E., Arnett, W.D., Clayton, D.D.: 1973, Ap. J. Suppl. 26, 231.CrossRefADSGoogle Scholar
  17. Woosley, S.E., Weaver, T.A.: 1982, in “Essays in Nuclear Astrophysics”, (Cambridge University Press), p. 377.Google Scholar

Copyright information

© D. Reidel Publishing Company 1984

Authors and Affiliations

  • W. David Arnett
    • 1
  • F.-K. Thielemann
    • 2
  1. 1.Enrico Fermi InstituteUniversity of ChicagoChicagoUSA
  2. 2.Max-Planck-Institut für Physik und AstrophysikGarching b. MünchenFed. Rep. Germany

Personalised recommendations