Skip to main content

Premartensitic Behavior and Charge Density Waves in TiNi Alloys

  • Chapter
Book cover Modulated Structure Materials

Part of the book series: Nato ASI Series ((NSSE,volume 83))

  • 183 Accesses

Abstract

Variations of the intermetallic compound TiNi are well-known examples of shape-memory alloys. The addition of Fe, for example, is a method of changing the martensitic start temperature, and thus the shape memory effect, over a wide temperature range. A puzzling aspect of these materials has been the presence of precursive effects. Reports of the appearance of superlattice spots in x-ray studies, of resistivity and susceptibility anomalies, and of changes in crystal structure have appeared without a suitable explanation.

We have recently completed a detailed study of these premartensitic effects in TiNi(Fe) with Fe substituting up to 3.2 at.% for Ni. The premartensitic stage of theses alloys is found to be comprised of two distinct phases, one of which is a rare example of an incommensurate charge density wave (CDW) in a three dimensional metal. Two phase transitions occur, one separating the incommensurate phase from the normal, CsCl high temperature phase, and the other marking the onset of a rhombohedral distortion in which the lattice distorts to accommodate the periodicity of the charge density wave.

At the transition temperature, superlattice spots appear which are approximately 1% removed from the true 1/3 positions. Electron micrographs of a sample using a superlattice spot show antiphase-like domains of diameter ~ 1500 Å which are suggestive of discommensuration domains. However, these domains, once formed do not change size as expected from the theory of discommensurations. Accompanying the appearance of the superlattice spots is a kink in the susceptibility curve, indicating a change in the density of states at the Fermi energy.

Approximately 10 K below the onset of this incommensurate phase, a structural transition occurs to a rhombohedral phase. The nature of the distortion is such that the longer (111) axis now corresponds to exactly one wave length of the charge density wave. Thus, the lattice appears to distort to accommodate the CDW, rather than the more usual change in CDW periodicity. At this transition, a large peak in the specific heat is observed, which shows some hysteresis. The rhombohedral angle decreases abruptly at this temperature to 89.7°. At lower temerpatures, the rhombohedral distortion increases, with the CDW wavelength remaining locked-in. At this transition, electron micrographs show the appearance of needle-shaped domains, each of which has a single rhombohedral axis and which has a twin relationship with the matrix in which they appear. Examination of the superlattice spots within single needles indicates that a single (111) wavevector occurs along the rhombohedral axis and the (110) superlattice is oriented normal to this rhombohedral axis.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sandrock, G.D., Perkins, A.J. and R.F. Hehemann. Met. Trans. 2, 2769 (1971).

    Article  CAS  Google Scholar 

  2. Wayman, C.M., Cornelis, I. and K. Shimizu. Scripta Met. 6, 115 (1972).

    Article  CAS  Google Scholar 

  3. Chandra, K. and G.R. Purdy. J. Appl. Phys. 39,2176 (1968).

    Article  CAS  Google Scholar 

  4. Otsuka, K., Sawamura, T. and K. Shimizu. Phys. State. Sol. 5, 457 (1971).

    Article  CAS  Google Scholar 

  5. Wang, F.E., DeSavage, B.F., Buehler, W.J. and W.R. Hosler. J. Appl. Phys. 39, 2166 (1968).

    Article  CAS  Google Scholar 

  6. Bradley, D. J. Acoust. Soc. Am. 37, 700 (1965).

    Article  CAS  Google Scholar 

  7. Hasiguti, R.R and K. Iwusaki. J. Appl. Phys. 39, 2182 (1968).

    Article  CAS  Google Scholar 

  8. Wasilewski, R.J. Trans. Met. Soc. AIME 233, 1691 (1965).

    CAS  Google Scholar 

  9. Dautovich, D.P., Melkvi, Z., Purdy, G.R. and C.V. Stager. J. Appl. Phys 37, 2513 (1966).

    Article  CAS  Google Scholar 

  10. Denoyer, F., Comes, R., Garito, A.F. and A.J. Heeger. Phys. Rev. Lett. 35,445 (1975).

    Article  CAS  Google Scholar 

  11. Shirane, G., Shapiro, S.M., Comes, R., Garito, A.F. and A.J. Heeger. Phys. Rev. B 24, 2325 (1976).

    Article  Google Scholar 

  12. Bak, P. and V.J. Emery. Phys. Rev. Lett. 36, 978 (1976).

    Article  CAS  Google Scholar 

  13. Eagen, C., Werner, S. and R. Saillant, Phys. Rev. B 12, 2036 (1975).

    Article  CAS  Google Scholar 

  14. Wilson, J.A., DiSalvo, F.J. and S. Mahajan. Adv. Phys. 24, 117 (975).

    Article  Google Scholar 

  15. Moncton, D.E., Axe, J.D. and F.J. DiSalvo. Phys. Rev. Lett. 34, 734 (1975).

    Article  CAS  Google Scholar 

  16. Craven, R.A., DiSalvo, F.J. and F.S.L. Hsu. Solid St. Commun., 25, 39 (1978).

    Article  CAS  Google Scholar 

  17. McMillan, W. Phys. Rev. B 12, 19975 (1975); Ibid., 14, 1496 (1976); Ibid., 16,643,4655 (1977).

    Google Scholar 

  18. Meichle, M. Ph.D. Thesis, 1981, Physics Dept., Univ. of Illinois at Urbana-Champaign.

    Google Scholar 

  19. Thornburg, K.A., Dunne, D.P. and C.M. Wayman. Met. Trans. 2, 2302 (1971).

    CAS  Google Scholar 

  20. Dautovich, D.P. and G.R. Purdy. Canadian Met. Quarterly 4, 129 (1965).

    CAS  Google Scholar 

  21. Tadaki, T., Katano, Y. and K. Shimizu. Acta. Met. 26, 883 (1978).

    Article  CAS  Google Scholar 

  22. Salamon, M., Meichle, M., Wayman, C.M., Hwang, C.M. and M. Shapiro. AIP Conf. Proc. 53, 223 (1979).

    Article  CAS  Google Scholar 

  23. Hwang, C.M. and C.M. Wayman. Scripta Met. 17, 381, 385 (1983).

    Article  CAS  Google Scholar 

  24. Satija, S.K., Shapiro, S.M. and M.B. Salamon. Bull. Am. Phys. Soc. 26, 381 (1981).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Martinus Nijhoff Publishers, Dordrecht

About this chapter

Cite this chapter

Hwang, C.M., Meichle, M., Salamon, M.B., Wayman, C.M. (1984). Premartensitic Behavior and Charge Density Waves in TiNi Alloys. In: Tsakalakos, T. (eds) Modulated Structure Materials. Nato ASI Series, vol 83. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-6195-1_30

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-6195-1_30

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-009-6197-5

  • Online ISBN: 978-94-009-6195-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics