Advertisement

Calcium-ions and excitation contraction coupling in vascular smooth muscle cells

  • R. Casteels
Part of the Developments in Cardiovascular Medicine book series (DICM, volume 40)

Summary

Calcium entry, release and extrusion are essential parameters in determining the activity of smooth muscle cells. Modification of any of these parameters by pharmacological means could have important therapeutic implications. However, we should also be aware of the fact that Ca2+ is not the only secondary messenger in smooth muscle, and that therefore pharmacological agents not necessarily always act by changing the Ca metabolism of smooth muscle cells.

Keywords

Smooth Muscle Cell Sarcoplasmic Reticulum Rabbit Aorta Smooth Muscle Tissue Taenia Coli 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Résumé

L’entrée des ions calciques, leur libération et leur extrusion sont des processus essentiels déterminant l’activité des muscles lisses. La modification d’un de ces processus par des agents pharmacologiques peut mener à des implications thérapeutiques importantes. Cependant, le Ca2+ n’est pas le seul messager secondaire dans le muscle lisse et, par conséquent, l’effet des agents pharmacologiques n’y est pas toujours nécessairement dû à un changement du métabolisme calcique.

Resumen

La penetración, liberación y expulsión de calcio son parámetros esenciales en la determinación de la actividad de las células musculares Iisas. La modificación de cualquier de estos parámetros por medio de fármacos podría tener implicaciones terapéuticas importantes. No obstante, ha de tenerse en cuenta el hecho de que Ca2+ no es el único agente secundario en el músculo liso, y que por eso los agentes farmacológicos no siempre actúan necesariamente cambiando el metabolismo de calcio en las células musculares lisas.

Zusammenfassung

Kalziumeintritt, -freisetzung und -Verdrãngung sind essentielle Parameter, die die Aktivität der glatten Muskeln bestimmen. Die Veränderung eines dieser Parameter durch pharmakologischen Mittel kann wichtige therapeutische Folgen haben. Wir sollen jedoch berücksichtigen, dass Ca2+ nicht der einzige sekundäre Botenstoff in den glatten Muskeln ist und dass pharmakologische Stoffe daher nicht immer notwendigerweise dadurch wirken, dass sie den Ca-Stoffwechsel in der glatten Muskulatur ändern.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Adelstein, R.S., and E. Eisenberg. Regulation and kinetics of the actin-myosin-ATP interaction. Ann. Rev. Biochem., 49,921–956. (1980)PubMedCrossRefGoogle Scholar
  2. Bolton, T.B. Mechanisms of action of transmitters and other substances on smooth muscle. Physiol. Rev., 59, 606–718. (1979)PubMedGoogle Scholar
  3. Caputo, C. Excitation and contraction processes in muscle. Ann. Rev. Biophys. Bioeng., 7, 63–84. (1978)CrossRefGoogle Scholar
  4. Casteels, R., and G. Droogmans. Exchange characteristics of the noradrenaline-sensitive calcium store in vascular smooth muscle cells of rabbit ear artery. J. Physiol., 317, 263–279. (1981)PubMedGoogle Scholar
  5. Casteels, R., J. Goffin, L. Raeymaekers and F. Wuytack. Calcium pumping in the smooth muscle cells of the taenia coli. J. Physiol., 231, 19–20P. (1973)Google Scholar
  6. Casteels, R. and L. Raeymaekers. The action of acetylcholine and catecholamines on an intracellular calcium store in the smooth muscle cells of the guinea-pig taenia coli. J. Physiol., 294, 51–68. (1979)PubMedGoogle Scholar
  7. Deth, R. and C. van Breemen. Relative contributions of Ca2+ release during drug induced activation of the rabbit aorta. Plfugers Arch., 348, 13–22. (1974)CrossRefGoogle Scholar
  8. Deth, R. and R. Casteels. A study of releasable Ca fractions in smooth muscle cells of the rabbit aorta. J. Gen. Physiol., 69, 401–416. (1977)PubMedCrossRefGoogle Scholar
  9. Droogmans, G. and R. Casteels. Temperature-dependence of 45Ca fluxes and contraction in vascular smooth muscle cells of rabbit ear artery. Pflugers Arch., 391, 183–189. (1981)PubMedCrossRefGoogle Scholar
  10. Droogmans, G., L. Raeymaekers and R. Casteels. Electro-and pharmacomechanical coupling in the smooth muscle cells of the rabbit ear artery. J. Gen. Physiol., 70, 129–158. (1977)PubMedCrossRefGoogle Scholar
  11. Golenhofen, K. and N. Hermstein. Differentiation of calcium activation mechanisms in vascular smooth muscle by selective suppression with verapamil and D600. Blood Vessels, 12, 21–37. (1975)PubMedGoogle Scholar
  12. Kitamura, K. and H. Kuriyama. Effects of acetylcholine on the smooth muscle cell of isolated main coronary artery of the guinea-pig. J. Physiol., 293, 119–133. (1977)Google Scholar
  13. Nonomura, Y. and S. Ebashi. Calcium regulatory mechanism in vertebrate smooth muscle. Biomed. Res., 1, 1–14. (1980)Google Scholar
  14. Raeymaekers, L, F. Wuytack and R. Casteels. Na-Ca exchange in taenia coli of the guinea-pig. Pflugers Arch., 347, 329–340. (1975)CrossRefGoogle Scholar
  15. Reuter, H., M.P. Blaustein and G. Haeusler. Na-Ca exchange and tension development in arterial smooth muscle. Phil. Trans. R. Soc. B., 265, 87–98. (1973)PubMedCrossRefGoogle Scholar
  16. Somlyo, A.P., CE. Devine, A.V. Somlyo, S.R. North. Sarcoplasmic reticulum and the temperature-dependent contraction of smooth muscle in calcium-free solutions. J. Cell. Biol., 51, 722–741. (1971)PubMedCrossRefGoogle Scholar
  17. Somlyo, A.V. and A.P. Somlyo. Electromechanical and pharmacomechanical coupling in vascular smooth muscle. J. Pharmac. exp. then, 159, 129–145. (1968)Google Scholar
  18. Somlyo, A.P., A.V. Somlyo and H. Shuman. Electron probe analysis of vascular smooth muscle. Composition of mitochondria, nuclei and cytoplasm. J. Cell. Biol., 81, 316–335. (1979)PubMedCrossRefGoogle Scholar
  19. van Breemen, C., B.R. Farinas, P. Gerba and E.D. McNaughton. Excitation-contraction coupling in rabbit aorta studied by the lanthanum method for measuring cellular calcium influx. Circul. Res., 30, 44–54. (1972)Google Scholar
  20. van Breemen, C., F. Wuytack and R. Casteels. Stimulation of 45Ca efflux from smooth muscle cells by metabolic inhibition and high K depolarization. Pflugers Arch., 359, 183–196. (1975)PubMedCrossRefGoogle Scholar
  21. Wuytack, F. and R. Casteels. Demonstration of A(Ca2+ + Mg2+)-ATPase activity probably related to Ca2+-transport in the microsomal fraction of porcine coronary artery smooth muscle. Biochim. Biophys. Acta, 595, 257–263. (1980)PubMedCrossRefGoogle Scholar
  22. Wuytack, F., G. De Schutter and R. Casteels. The effect of calmodulin on the active calcium-ion transport and (Ca2++ Mg2 +)-dependent ATPase in microsomal fractions of smooth muscle compared with that in erythrocytes and cardiac muscle. Biochem. J., 190, 827–831. (1980)PubMedGoogle Scholar
  23. Wuytack, F., G. De Schutter and R. Casteels. Partial purification of (Ca2+ + Mg2+)-dependent ATPase from pig smooth muscle and reconstitution of an ATP-dependent Ca2+-transport system. Biochem. J., 198, 265–271. (1981a)PubMedGoogle Scholar
  24. Wuytack, F., G. De Schutter and R. Casteels. Purification of (Ca2+ + Mg2+)-ATPase from smooth muscle by calmodulin affinity chromatography. Febs Letters, 129, 297–300. (1981b)PubMedCrossRefGoogle Scholar

Copyright information

© Martinus Nijhoff Publishers, The Hague 1984

Authors and Affiliations

  • R. Casteels

There are no affiliations available

Personalised recommendations