Advertisement

Calcium entry blockers and pharmacological aspects of migraine

  • R. Towart
Part of the Developments in Cardiovascular Medicine book series (DICM, volume 40)

Summary

Accumulating evidence suggests that, despite an unknown and probably heterogeneous aetiology, classical migraine attacks are preceded by a prodromal phase of localised cerebral ischaemia. The cerebral anti-vasoconstrictor and anti-ischaemic effects of calcium entry blockers are reviewed with special reference to nimodipine, which acts predilectively on the cerebral vasculature. Calcium entry blockers with this pharmacological profile represent a novel and rational pharmacological prophylaxis against the cerebral vasoconstriction which precipitates classical migraine. Initial clinical trials in man are proving promising.

Keywords

Cerebral Blood Flow Calcium Antagonist Cerebral Blood Vessel Cerebral Hypoxia Cerebral Vasoconstriction 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Résumé

Un grand nombre de preuves suggèrent que, malgré une étiologie inconnue et probablement hétérogène, les accès de migraine classique sont précédés par une phase prodromique d’ischémie cérébrale localisée. Les effets cérébraux anti-vasoconstricteurs et anti-ischémiques des agents bloqueurs de l’entrée de calcium sont étudiés avec une attention toute spéciale pour la nimodipine, qui agit avec prédilection sur le système vasculaire cérébral. Les agents bloqueurs de l’entrée de calcium possédant ce profil pharmacologique représentent une nouvelle prophylaxie pharmacologique rationnelle contre la vasoconstriction cérébrale qui précipite la migraine classique. Les premières expériences cliniques chez l’homme semblent fort prometteuses.

Resumen

Más y más evidencia va sugeriendo que, a pesar de una estologfa desconocida y probablemente heterogénea, clásicos ataques de jaqueca son precedidos por una fase prodrómica de isquemia cerebral localizada. Los efectos antivasoconstrictores y antiisquémicos cérébrales de los inhibidores de la penetración intracelular de Ca2+ se examinan con especial referenda a nimodipino, que actúa preferentemente en el sistema vascular cerebral. Los inhibidores de la penetración intracelular de Ca2+, con este perfil farmacológico, representan una original y racional profilaxis farmacológica contra la vasoconstricción cerebral que precede a la jaqueca clásica. Las pruebas clínicas iniciales en el hombre son prometedoras.

Zusammenfassung

Zunehmendes Beweismaterial deutet darauf hin, dass, ungeachtet einer unbekannten und heterogenen Ätiologie, klassischen Migräneanfällen eine Prodromalphase örtlicher Hirnischämie vorangeht. Die antivasokonstriktions- und anti-ischämischen Wirkungen der Kalzium-Einstromhemmer werden kurz beschrieben, wobei dem Nimodipin, welches eine Prädilektion für Hirngefässe zeigt, besondere Aufmerksamkeit geschenkt wird. Kalzium-Einstromhemmer mit diesem pharmakologischen Profil bedeuten eine neue und rationale Prophylaxe gegen zerebrale Vasokonstriktion, die zu klassischer Migräne führen kann. Erste klinische Versuche beim Menschen sind erfolgversprechend.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Amery, W.K. Brain hypoxia in migraine: pathophysiologic and therapeutic implications. J. Cereb. Blood Flow Met, 2, Suppl. 1. S 62–65. (1982)Google Scholar
  2. Amery, W.K., Wauquier, A., Van Nueten, J.M., DeClerck, F., Van Reempts, J.V., Janssen, P.A.J. Theanti-migrainous pharmacology of flunarizine (R 14 950), a calcium antagonist. Drugs Exptl. Clin. Res., 7, 1–10. (1981)Google Scholar
  3. Auer, L.M. Pial arterial vasodilatation by intravenous nimodipine in cats. Arzneimittel-Forsch. (Drug Res.), 31, 1423–1425. (1981)Google Scholar
  4. Bevan, J.A. Diltiazem selectively inhibits cerebrovascular extrinsic but not intrinsic myogenic tone. Circ. Res., 52 (Suppl. 1), 104–109. (1983)Google Scholar
  5. Blau, J.N. News on headache (editorial). Brit. Med. J., 287, 166. (1983)CrossRefGoogle Scholar
  6. Burnstock, G. Pathophysiology of migraine. Lancet, i, 1397–1399. (1981)CrossRefGoogle Scholar
  7. Casteels, R. Calcium ions and excitation-contraction coupling in vascular smooth muscle cells. In: Calcium entry blockers in cardiovascular and cerebral dysfunctions. Editors: T. Godfraind, A. Herman, D. Wellens. Martinus Nijhoff Publishers, pp 45-52. (1984)Google Scholar
  8. Caviness, V.S. and O’Brien, P. Current Concepts: headache. N. Engl. J. Med., 302, 446–450. (1980)PubMedCrossRefGoogle Scholar
  9. Crook, M. Migraine: a biochemical headache. Biochem. Soc. Trans., 9, 351–357. (1981)PubMedGoogle Scholar
  10. Edmeads, J. Cerebral blood flow in migraine. Headache, 17, 148–152. (1977)PubMedCrossRefGoogle Scholar
  11. Fleckenstein, A. Specific pharmacology of calcium in myocardium, cardiac pacemakers, and vascular smooth muscle. Ann. Rev. Pharmacol. Toxicol., 17, 149–166. (1977)CrossRefGoogle Scholar
  12. Friedman, A.P. Overview of migraine. In: Advances in Neurology, vol. 33 (Critchley, M. et al., eds.). Raven Press, New York, 1982, pp 1–17. (1982)Google Scholar
  13. Gelmers, H.J. Effect of nimodipine (BAY e9736) on postischemic cerebrovascular reactivity as revealed by measuring regional cerebral blood flow (rCBF). Acta-Neu rochir. (Wien), 63, 283–290. (1982)Google Scholar
  14. Gelmers, H.J. Nimodipine, a new calcium antagonist in the prophylactic treatment of migraine. Headache, 23, 106–109. (1983)PubMedCrossRefGoogle Scholar
  15. Graham, J.R. and Wolff, H.G. Mechanism of migraine headache and action of ergotamine tartrate. Arch. Neurol. Psychiatry, 39, 737–763. (1938)Google Scholar
  16. Hanington, E., Jones, R.J., Agmess, J.A.L. and Wachowicz, B. Migraine: a platelet disorder. Lancet, ii, 720–723. (1981)CrossRefGoogle Scholar
  17. Harper, A.M., Craigen, L. and Kazda, S. Effect of the calcium antagonist nimodipine on cerebral blood flow and metabolism in the primate. J. Cereb. Blood Flow Metab., 1, 349–356. (1981)PubMedCrossRefGoogle Scholar
  18. Hass, W.K. Beyond cerebral blood flow, metabolism and ischaemic thresholds: Examination of the role of calcium in initiation of cerebral infarction. In: Cerebral Vascular Disease Vol. 3 (Meyer, J.S. et al., eds.). Excerpta Medica, Amsterdam, pp 3–17. (1981)Google Scholar
  19. Havanka-Kanniainen, H., Myllyla, V.V. and Hokkanen, E. Nimodipine in the prophylaxis of migraine, a double blind study. Acta Neurol. Scand., 65, Suppl. 90, 77–78. (1982)CrossRefGoogle Scholar
  20. Haws, C.W., Gourley, J.K. and Heistad, D.D. Effects of nimodipine on cerebral blood flow. J. Pharmac. Exp. Ther., 225, 24–28. (1983)Google Scholar
  21. Henry, P.D. Comparative pharmacology of Ca2+-antagonists. Am. J. Cardiol., 46, 1047–1058. (1980)PubMedCrossRefGoogle Scholar
  22. Hoffmeister, F., Benz, U., Heise, A., Krause, H.-P. and Neuser, V. Behavioural effects of nimodipine in animals. Arz-neim.-Forsch. (Drug Res.), 32, 347–360. (1982)Google Scholar
  23. Johnsson, G., Murray, G., Tweddel, A. and Hutton, I. Haemodynamic effects of a new vasodilator drug, felodipine, in healthy subjects. Eur. J. Clin. Pharmacol., 24, 49–53. (1983)PubMedCrossRefGoogle Scholar
  24. Kahan, A., Weber, S., Amor, B., Guerin, F. and Degeorges, M. Nifedipine in the treatment of migraine in patients with Raynaud’s phenomenon. N. Engl. J. Med., 308, 1102–1103. (1983)PubMedGoogle Scholar
  25. Kazda, S., Garthoff, B., Krause, H.P. and Schlossmann, K. Cerebrovascular effects of the calcium antagonistic dihydropyridine derivative nimodipine in experimental animals. Arzneim.-Forsch. (Drug Res.), 32, 331–338. (1982a)Google Scholar
  26. Kazda, S., Garthoff, B., Luckhaus, G. and Nash, G. Prevention of cerebrovascular lesions and mortality in stroke-prone spontaneously hypertensive rats by the calcium antagonist nimodipine. In: Calcium Modulators, Godfraind, T. et al., eds. Elsevier, Amsterdam, pp. 155–167. (1982b)Google Scholar
  27. Kazda, S., Garthoff, B., Meyer, H., Schlossmann, K., Stoepel, K., Towart, R., Vater, W. and Wehinger, E. Pharmacology of a new calcium antagonistic compound, isobutyl methyl 1,4-dihydro-2, 6-dimethyl-4-(2-nitrophenyl)-3,5-pyridinedicarboxylate (nisoldipine, BAY K 5552). Arzneim.-Forsch. (Drug Res.), 30(II), 2144–2162. (1980)Google Scholar
  28. Kazda, S., Garthoff, B. and Knorr, A. Nitrendipine and other calcium entry blockers (calcium antagonists) in hypertension. Fed. Proc, 42, 196–200. (1983a)PubMedGoogle Scholar
  29. Kazda, S., Knorr, A. and Towart, R. Common properties, and differences between, various calcium antagonists. Progress in Pharmacology, 5, 83–116. (1983b)Google Scholar
  30. Louis, P. A double-blind placebo-controlled prophylactic study of flunarizine in migraine. Headache, 21, 235–239. (1981)PubMedCrossRefGoogle Scholar
  31. Olesen, J. Is ischaemia involved in the pathogenesis of migraine? Path. Biologie, 30, 318–324. (1982)Google Scholar
  32. Pan, M. and Janis, R.A. Nimodipine, a new cerebral vasodilator, stimulates Na+, K +-activated ATPase of smooth muscle microsomes. Fed. Proc, 42, 1483. (1982)Google Scholar
  33. Poser, C.M. Papaverine in prophylactic treatment of migraine. Lancet, i, 1290. (1974)CrossRefGoogle Scholar
  34. Raskin, N.H. Pharmacology of migraine. Ann. Rev. Pharmacol. Toxicol., 21, 463–478. (1981)CrossRefGoogle Scholar
  35. Riopelle, R.J. and McCans, J.L. A pilot study of the calcium antagonist diltiazem in migraine syndrome prophylaxis. Le Journal Can. d. Sciences Neurol., 9, 269 (abst). (1982)Google Scholar
  36. Rose, F.C. Possible role for flunarizine in the prophylaxis of migraine. In: Cerebral Hypoxia in the Pathogenesis of Migraine. Rose, F.C. and Amery, W.K., eds., Pitman, London, pp. 185–194. (1982)Google Scholar
  37. Schmunck, G.A. and Lefer, A.M. Anti-aggregatory actions of calcium channel blockers in cat platelets. Res. Commun. Chem. Path. Pharmacol., 35, 179–187. (1982)Google Scholar
  38. Siesjo, B.K. Cell damage in the brain: A speculative synthesis. J. Cerebral Blood Flow Met, 1, 155–185. (1981)CrossRefGoogle Scholar
  39. Skinhoj, E. Haemodynamic studies within the brain during migraine. Arch. Neurol., 29, 95–98. (1973)PubMedGoogle Scholar
  40. Solomon, G.D. Calcium channel blockers in migraine. Lancet, II, 1982, 162. (1982)CrossRefGoogle Scholar
  41. Steen, P.A., Newberg, L.A., Milde, J.H. and Michenfelder, J.D. Nimodipine improves cerebral blood flow and neurologic recovery after complete cerebral ischaemia in the dog. J. Cereb. Blood Flow Metab., 3, 38–43. (1983)PubMedCrossRefGoogle Scholar
  42. Tanaka, K., Gotoh, F., Muramatsu, F., Fukuuchi, Y., Amano, T., Okayasu, H. and Suzuki, N. Effects of nimodipine (BAY e9736) on cerebral circulation in cats. Arzneim.-Forsch. (Drug Res.), 30, 1494–1497. (1980)Google Scholar
  43. Towart, R. The selective inhibition of serotonin-induced contractions of rabbit cerebral vascular smooth muscle by calcium antagonistic dihydropyridines. An investigation of the mechanism of action of nimodipine. Circ. Res., 48, 650–657. (1981a)PubMedGoogle Scholar
  44. Towart, R. Predilective relaxation by the calcium antagonist nimodipine (BAY e9736) of isolated cerebral blood vessels contracted with autalogous blood. Brit. J. Pharmacol., 74, 268P–269P. (1981b)Google Scholar
  45. Towart, R. and Kazda, S. The effect of nimodipine (BAY e9736), a calcium antagonist dihydropyridine, on cerebral and peripheral vessels. In: Pathophysiology and Pharmacotherapy of Cerebrovascular Disorders, Betz, E., Grote, J., Heuser, D. and Wullenweber, R., eds., Baden-Baden: Verlag Gerhard Witzstrock, pp. 64–67. (1980)Google Scholar
  46. Towart, R. and Perzborn, E. Nimodiprne inhibits carbocyclic thromboxane-A2-induced contractions of cerebral arteries. Eur. J. Pharmacol., 69, 213–215. (1981)PubMedCrossRefGoogle Scholar
  47. Towart, R., Wehinger, E., Meyer, H. and Kazda, S. The effects of nimodipine, its optical isomers and metabolites on isolated vascular smooth muscle. Arzneim.-Forsch. (Drug Res.), 32, 338–346. (1982)Google Scholar
  48. Vanhoutte, P.M. Hypoxia and tissue perfusion. In: Cerebral Hypoxia in the Pathogenesis of Migraine. Rose, F.C. and Amery, W.K., eds., Pitman, London, pp. 3–11. (1982)Google Scholar
  49. Van Nueten, J.M. and Vanhoutte, P.M. Selectivity of calcium-antagonism and serotonin-antagonism with respect to venous and arterial tissues. Angiology, 32, 476–484. (1981)PubMedCrossRefGoogle Scholar
  50. Van Nueten, J.M. Vascular pharmacology of calcium entry blockers. In: Calcium entry blockers in cardiovascular and cerebral dysfunctions. Editors: T. Godfraind, A. Herman, D. Wellens. Martinus Nijhoff Publishers, 59-72. (1984)Google Scholar

Copyright information

© Martinus Nijhoff Publishers, The Hague 1984

Authors and Affiliations

  • R. Towart

There are no affiliations available

Personalised recommendations