Advertisement

Basic mechanisms and classification of calcium entry blockers

  • T. Godfraind
Part of the Developments in Cardiovascular Medicine book series (DICM, volume 40)

Summary

Calcium antagonists may exert the following actions at the level of the cell membrane:
  1. 1.

    they may interfere with specific Ca2+ channels e.g. the slow Ca2+ channels of the heart, voltage-operated or receptor-operated channels in smooth muscles;

     
  2. 2.

    they may diminish intracellular Ca2+ entry by blocking the continuous leakage of the cell membrane;

     
  3. 3.

    they might restore or improve Ca2+ extrusion via the Na-Ca exchange pump or the Ca-ATP pump. Calcium antagonists may exert additional actions, related or not to calcium metabolism or to calcium function. Calcium entry blockers do specifically act on membrane Ca channels operated by depolarization or by receptors.

     

Keywords

Calcium Antagonist Entry Blocker Calcium Modulator Calcium Entry Blocker Elsevier Biomedical 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Résumé

Les antagonistes du calcium peuvent exercer les actions suivantes au niveau de la membrane cellulaire:
  1. 1.

    IIs peuvent interférer avec les canaux spécifiques de Ca2+, par exemple les lents canaux de Ca2+ du coeur, les canaux activés par voltage ou par récepteur dans les muscles lisses.

     
  2. 2.

    IIs peuvent diminuer l’entrée de Ca2+ dans la cellule en bloquant l’infiltration s’effectuant par la membrane cellulaire.

     
  3. 3.

    IIs pourraient restaurer ou améliorer l’expulsion du Ca2+ via la pompe à échange Na-Ca ou la pompe Ca-ATP.

     

Les antagonistes du calcium peuvent exercer d’autres actions, reliées ou non au métabolisme du calcium ou à la fonction du calcium. Les agents bloqueurs de l’entrée de calcium agissent spécifiquement sur les canaux de calcium de la membrane activés par dépolarisation ou par des récepteurs.

Resumen

Los antagonistes de calcio pueden ejercer las acciones siguientes a nivel de la membrana celular:
  1. 1.

    pueden interferir con canales Ca2+ específicos p.ej. los canales Ca2+ “lentos” del corazón, los canales accionados por voltaje o por receptores en músculos lisos;

     
  2. 2.

    pueden disminuir la entrada intracelular de Ca2+ bloqueando la gota continua de la membrana celular;

     
  3. 3.

    podrían restablecer o mejorar la extrusión de Ca2+ via la bomba de cambio Na-Ca o la bomba Ca-ATP.

     

Los antagonistas de calcio pueden ejercer acciones adicionales, relacionadas o no con el metabolismo cálcico o con la función cálcica. Los inhibidores de la entrada de Ca2+ actüúan específicamente en canales membranosos de Ca2+, accionados por depolarización o por receptores.

Zusammenfassung

Kalzium-Einstromhemmer können an der Zellmembran die folgenden Wirkungen ausüben:
  1. 1.

    1. Beeinflussung spezifischer Ca2+-Kanäle, z.B. der langsamen Ca2+- Kanäle des Herzens, oder der potential- bzw. rezeptorabhängigen Kanäle glatter Muskeln;

     
  2. 2.

    2. Herabsetzung des intrazellulären Ca2+ -Einstroms durch Hemmung des kontinuierlichen Durchlasses durch die Zellmembran;

     
  3. 3.

    3. Wiederherstellung bzw. Verbesserung der Ca2+ -Ausfuhr über die Na-Ca-Austauschpumpe oder über die Ca-ATP-Pumpe.

     

Kalzium-Einstromhemmer können auch zusätzliche Wirkungen ausüben, die nicht unbedingt mit Calciummetabolismus oder Calciumfunktion zusammenhängen müssen. Sie wirken spezifisch auf Membran-Ca-Kanäle ein, die durch Depolarisierung oder Rezeptoren reguliert werden.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Boiger, G.T., Gengo, P., Klockowski, R., Luchowski, E., Siegel, H., Janis, R.A., Triggle, S.M. and Triggle, D.J. Characterization of binding of the Ca2+ channel antagonist, (3H)-nitrendipine, to guinea-pig ileal smooth muscle. J. Pharmacol. Exp. Ther., 225, 291–309. (1983)Google Scholar
  2. Bolton, R.B. Mechanisms of action of transmitters and other substances on smooth muscle. Physiol. Rev., 59, 606–718. (1979)PubMedGoogle Scholar
  3. Caroni, P. and Carafoli, L. The regulation of the Na+-Ca2+ exchange of heart sarcolemma. Eur. J. Biochem. 132, 451–460. (1983)PubMedCrossRefGoogle Scholar
  4. Catterai, W.A. Neurotoxins that act on voltage-sensitive sodium channels in excitable membranes. Ann. Rev. Pharmacol. Toxicol., 20, 15–43. (1980)CrossRefGoogle Scholar
  5. Cauvin, C., Loutzenhiser, R. and van Breemen, C. Mechanisms of calcium antagonist-induced vasodilatation. Ann. Rev. Pharmacol. Toxicol., 23, 373–396. (1983)CrossRefGoogle Scholar
  6. Fleckenstein, A. Specific pharmacology of calcium in myocardium, cardiac pacemakers and vascular smooth muscle. Ann. Rev. Pharmacol. Toxicol., 17, 149–166. (1977)CrossRefGoogle Scholar
  7. Fleckenstein, A. Basic membrane actions of calcium antagonists with special reference to verapamil. In: Calcium Modulators. T. Godfraind, A. Albertini and R. Paoletti (Eds.)., pp. 297–310, Elsevier Biomedicai Press, Amsterdam-New York-Oxford. (1982)Google Scholar
  8. Fleckenstein, A. and Grun, G. Reversible Blockierung der elektromechanischen Koppelungsprozesse in der glatten Muskulatur des Rattenuterus mittels organischer Ca2+-antagonisten (Iproveratril, D600, Prenylamin). Pfluegers Arch., 307, R26. (1969)Google Scholar
  9. Fleckenstein, A., Tritthart, A., Fleckenstein, B., Herbst, A. and Grun, G. Elne neue Gruppe kompetitiver Ca2+-antagonisten (Iproveratril, D600, Prenylamin), mit starken Hemmeffekten auf die electromekanische Koppelung in Warmblüter-myokard. Pfluegers Arch., 307, R25. (1969)Google Scholar
  10. Gillis, J.M. Similarities and differences in excitation-contraction coupling in the various types of muscle cells. In: Calcium Modulators. T. Godfraind, A. Albertini and R. Paoletti (Eds.)., pp. 29–38, Elsevier Biomedicai Press, Amsterdam-New York-Oxford. (1982)Google Scholar
  11. Glossmann, H., Ferry, D.R., Lübbecke, F., Meeves, R., and Hofmann, F. Calcium channels: direct identification with radioligand binding studies. TIPS, 431–437. (1982)Google Scholar
  12. Godfraind-De Becker, A. and Godfraind, T. Calcium transport system: a comparative study in different cells. Int. Rev. Cytol., 67, 141–170. (1980)PubMedCrossRefGoogle Scholar
  13. Godfraind, T. Calcium exchange in vascular smooth muscle, action of noradrenaline and lanthanum. J. Physiol. (London), 260, 21–35. (1976)PubMedGoogle Scholar
  14. Godfraind, T. Mechanisms of action of calcium entry blockers. Fed. Proc, 40, 2866–2871. (1982)Google Scholar
  15. Godfraind, T. Pharmacology of calcium entry blockers. In: Calcium Modulators. T. Godfraind, A. Albertini and R. Paoletti (Eds.)., pp. 51–65, Elsevier Biomedicai Press, Amsterdam-New York-Oxford. (1982)Google Scholar
  16. Godfraind, T. Actions of nifedipine on calcium fluxes and contraction in isolated rat arteries. J. Pharmacol. Exp. Ther., 224, 443–450. (1983)PubMedGoogle Scholar
  17. Godfraind, T. and Dieu, D. The inhibition by flunarizine of the norepinephrine-evoked contraction and calcium influx in rat aorta and mesenteric arteries. J. Pharmacol. Exp. Ther., 217, 510–515. (1981)PubMedGoogle Scholar
  18. Godfraind, T. and Kaba, A. Blockade or reversal of the contraction induced by calcium and adrenaline in depolarized arterial smooth muscle. Br. J. Pharmacol., 35, 548–560. (1969)Google Scholar
  19. Godfraind, T. and Miller, R.C. Specificity of action of Ca2+ entry blockers. Comparison of their actions in rat arteries and in human coronary arteries. Circ. Res., 52. (Suppl. 1), 181–192. (1983)Google Scholar
  20. Godfraind, T. and Morel, N. Na-Ca exchange in guinea-pig and rat smooth muscle. J. Physiol. (London), 340, 23P. (1983)Google Scholar
  21. Godfraind, T. and Polster, P. Etude comparative de médicaments inhibant la réponse contractile de vaisseaux isolés d’origine humaine ou animale. Thérapie, 23, 1209–1220. (1968)PubMedGoogle Scholar
  22. Godfraind, T., Albertini, A. and Paoletti, R. (editors). Calcium Modulators. Elsevier Biomedicai Press, Amsterdam-New York-Oxford. (1982)Google Scholar
  23. Godfraind, T., Kaba, A. and Polster, P. Differences in sensitivity of arterial smooth muscles to inhibition of their contractile response to depolarization by potassium. Arch. Int. Pharmacodyn. Ther., 172, 235–239. (1968)PubMedGoogle Scholar
  24. Lees, K.S. and Tsien, R.W. Mechanism of calcium channel blockade by verapamil, D600, diltiazem and nitrendipine in single dialyzed heart cells. Nature, 302, 790–794. (1983)CrossRefGoogle Scholar
  25. Millard, R.W., Grupp, G., Grupp, I.L., Di Salvo, J., De Pover, A. and Schwartz, A. Chronotropic, inotropic and vasodilator actions of diltiazem, nifedipine and verapamil: a comparative study of physiological responses and membrane receptor activity. Circ. Res., 52 (Suppl. 1), 29–39. (1983)Google Scholar
  26. Nayler, W.G., Ferrari, R. and Williams, A. Protective effect of pretreatment with verapamil, nifedipine and propranolol on mitochondrial function in the ischemic and reperfused myocardium. Am. J. Cardiol., 46, 242–248. (1980)PubMedCrossRefGoogle Scholar
  27. Rahwan, R.G., Piascik, M.F. and Witiak, D.T. The role of calcium antagonism in the therapeutic action of drugs. Can. J. Physiol. Pharmacol., 57, 443–460. (1979)PubMedCrossRefGoogle Scholar
  28. Saida, K. and van Breemen, C. Mechanism of Ca2+ antagonist-induced vasodilatation. Intracellular actions. Circ. Res., 52, 137–142. (1983)PubMedGoogle Scholar
  29. Schramm, M., Thomas, G., Towart, R. and Franckowiak, G. Novel dihydropyridines with positive inotropic action through activation of Ca2+ channels. Nature, 303, 535–537. (1983)PubMedCrossRefGoogle Scholar
  30. Singer, S.J. and Conrad, M.J. The structure of cell membranes. In: Cell membrane in function and dysfunction of vascular tissue. T. Godfraind and P. Meyer (Eds.), pp. 1–14, Elsevier Biomedicai Press, Amsterdam-New York-Oxford. (1981)Google Scholar
  31. Taira, N., Motomura, S., Narimatsu, A. and Fjima, T. Experimental pharmacological investigations of effects of nifedipine on atrioventricular conduction in comparison with those of other coronary vasodilators. In: The Second International Adalat Symposium. Lodner, W., Braasch, W. and Kroneberg, G. (Eds.), pp. 40-48, Springer Verlag. (1975)Google Scholar
  32. Triggle, D.J. and Swamy, V.C. Pharmacology of agents that affect calcium: agonists and antagonists. Chest, 78 (Suppl.), 174–180. (1980)PubMedGoogle Scholar
  33. Vanhoutte, P.M. Cinnarizine, flunarizine, lidoflazine. In: Calcium Modulators. T. Godfraind, A. Albertini and R. Paoletti (Eds.)., pp. 351–362, Elsevier Biomedicai Press, Amsterdam-New York-Oxford. (1982)Google Scholar
  34. Van Nueten, J.M. Selectivity of calcium entry blockers. In: Calcium Modulators. T. Godfraind, A. Albertini and R. Paolétti (Eds.)., pp. 199–208, Elsevier Biomedicai Press, Amsterdam-New York-Oxford. (1982)Google Scholar
  35. Vincenzi, F.F. Pharmacology of calmodulin antagonism. In: Calcium Modulators. T. Godfraind, A. Albertini and R. Paoletti (Eds.)., pp. 67–80, Elsevier Biomedicai Press, Amsterdam-New York-Oxford. (1982)Google Scholar
  36. Weiss, G. Sites of action of calcium antagonists in vascular smooth muscle. In: New perspectives on calcium’ antagonists. G. Weiss (Ed.), pp. 83–94, American Physiological Society, Bethesda, MD. (1981)Google Scholar
  37. Weiss, B., Prozialeck, W.C. and Wallace, T.L. Interactions of drugs with calmodulin. Biochemical, pharmacological and clinical implications. Biochem. Pharmacol., 31, 2217–2226. (1982)PubMedCrossRefGoogle Scholar
  38. Zsoter, T.T. and Church, J.G. Calcium antagonists: pharmacodynamic effects and mechanism of action. Drugs, 25, 93–112. (1983)PubMedCrossRefGoogle Scholar

Copyright information

© Martinus Nijhoff Publishers, The Hague 1984

Authors and Affiliations

  • T. Godfraind

There are no affiliations available

Personalised recommendations