Advertisement

Basic and clinical aspects of myocardial protection by calcium entry blockers

  • M. Borgers
  • W. Flameng
Part of the Developments in Cardiovascular Medicine book series (DICM, volume 40)

Summary

Our morphologic and cytochemical observations on myocardial ischemia in man, dog and rabbit strongly suggest that lidoflazine alleviates myocardial injury by preserving the cell surface structure. Whether this effect is achieved indirectly through energy preservation, lowering of oxygen consumption or through a direct interaction with membrane components, such as phospholipids, is not known at present. In view of the lack of obvious morphologic protective effects to mitochondria during the ischemic episode whilst marked preservation of the sarcolemma-glycocalyx is prominent, we favor the hypothesis of direct interaction between the drug and the sarcolemma-glycocalyx.

Keywords

Sialic Acid Cardioprotective Effect Entry Blocker Calcium Entry Blocker Calcium Binding Capacity 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Résumé

Nos observations morphologiques et cytochimiques sur l’ischémie myocardique chez l’ homme, le chien et le lapin suggèrent résolument que la lidoflazine soulage la lésion myocardique en préservant la structure de la surface cellulaire. On ne sait pas encore à l’ heure actuelle si cet effet est obtenu indirectement par une préservation d’énergie, une réduction de la consommation d’ oxygène ou par une interaction directe avec les composantes membraneuses telles que les phospholipides. En égard au manque d’ effets protecteurs morphologiques manifestes sur la mitochondrie pendant l’ épisode ischémique alors que la préservation du sarcolemme-glycocalyx est manifeste, nous penchons en faveur de l’ hypothèse d’ une interaction directe entre la substance et le sarcolemme-glycocalyx.

Resumen

Nuestras observaciones morfológicas y citoquímicas en isquemia miocardíaca en el hombre, el perro y el conejo indican que lidoflazina alivia el daño miocardíaco protegiendo la estructura de la pared celular. No se sabe, en este momento, si este efecto se realice indirectamente por preservación de energía, disminución de la consumición de oxígeno o por una interacción directa con compuestos de membrana, tales como los fosfolípidos. Dado la carencia de obvios efectos protectores morfológicos en mitocon-drias, durante el período isquémico, mientras la preservación marcada del sarcolema-glicocalix está destacada, preferimos la hipótesis de la directa interacción de la droga con el sarcolema-glicocalix.

Zusammenfassung

Unsere morphologischen und zytochemischen Beobachtungen über Myokardischämie bei Mensch, Hund und Kaninchen deuten darauf hin, dass Lidoflazin durch Schutz der Zelloberflächenstruktur die Myokardschäden verringert. Ob diese Wirkung auf indirektem Weg durch Energieeinsparung und Erniedrigung des Sauerstoffverbrauches, oder durch eine direkte Wechselwirkung mit Membrankomponenten, wie den Phospholipiden erfolgt, ist zur Zeit noch ungeklärt. In Anbetracht des Fehlens klarer morphologischer Schutzwirkungen gegenüber den Mitochondrien während der Ischämieperiode bei deutlichem Vorhandensein einer Sarkolemm-Glycocalyx-Konservierung, befürworten wir die Hypothese einer direkten Wechselwirkung zwischen dem Arzneimittel und dem Sarkolemm-Glycocalyx.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Bianchi, C.P. Pharmacology of excitation-contraction coupling in muscle. Introduction: statement of the problem. Federation Proc., 28(5), 1624–1628 (1969).Google Scholar
  2. Clark, R.E., Ferguson, T.B., West, P.N., Schuchleib, R.C. and Henri, P.D. Pharmacological preservation of the ischemic heart. Annals Thor. Surg., 24(4), 307–314 (1977).CrossRefGoogle Scholar
  3. Flameng, W., Daenen, W., Borgers, M., Thonä, F., Xhonneux, R., Van de Water, A. and Van Belle, H. Cardioprotective effects of lidoflazine during 1-hour normothermic global ischemia. Circulation, 64, 796–807 (1981).PubMedCrossRefGoogle Scholar
  4. Frank, J.S., Langer, G.A., Nudd, L.M. and Seraydarian, K. The myocardial cell surface, its histochemistry and the effect of sialic acid and calcium removal on its structure and cellular ionic exchange. Circ. Res., 41, 702–714 (1977).PubMedGoogle Scholar
  5. Godfraind, T., Khouri, G. and Sturbois, X. The action of flunarizine and lidoflazine on isoprenaline induced cardiac lesions. Arch. int. Pharmacodyn., 244, 330–332 (1980).PubMedGoogle Scholar
  6. Godfraind, T. Calcium influx and receptor-response coupling. In: “New perspectives on calcium antagonists”. Ed. G.B. Weiss, Am. Physiol. Soc, Bethesda, Maryland (1981).Google Scholar
  7. Hearse, D.J., Humphrey, S.M. and Bullock, G.R. The oxygen paradox and the calcium paradox: two facets of the same problem? J. Mol. Cell. Cardiol., 10, 641–668 (1978).PubMedCrossRefGoogle Scholar
  8. Hearse, D.J. and de Leiris, J. Enzymes in Cardiology, Publ. John Wiley & Sons, Ltd (1979).Google Scholar
  9. Jennings, R. B. and Ganote, C.E. Mitochondrial structure and function in acute myocardial ischemic injury. Circ. Res., 38, 81 (1976).Google Scholar
  10. Katz, A.M. Physiology of the heart. Raven Press, New York (1977).Google Scholar
  11. Kloner, R.A. and Braunwald, E. Review: Observations on experimental myocardial ischaemia. Cardiovasc. Res.(T.M.), 14, 370–395 (1980).Google Scholar
  12. Langer, G.A. The structure and function of the myocardial cell surface. Amer. J. Physiol., 235, H 461–468 (1978).Google Scholar
  13. Langer, G.A., Frank, J.S. and Philipson, K.D. Correlation of alterations in cation exchange and sarcolemmal ultrastructure produced by neuraminidase and phospholipases in cardiac cell tissue culture. Circulat. Res., 49, 1289–1299(1981).PubMedGoogle Scholar
  14. Nayler, W.G. The protective effect of lidoflazine on ischemic and reperfused heart muscle. R. Soc. Med. Congr. & Symp. Series, 29, 79 (1980).Google Scholar
  15. Nayler, W.G. and Grinwald, P. Calcium entry blockers and myocardial function. Federation Proc.(T.M.), 40, 2855–2861 (1981).Google Scholar
  16. Nayler, W.G., Poole-Wilson, P.A. and Williams, A. Hypoxia and calcium. J. Mol. Cell Cardiol., 11, 683 (1979).PubMedCrossRefGoogle Scholar
  17. Racker, E. Fluxes of Ca2+ and concepts. Federation Proc., 39, 2422–2426 (1980).Google Scholar
  18. Rahwan, R.G., Piascik, M.F. and Witiak, D.T. The role of calcium antagonism in the therapeutic action of drugs. Canad. J. Physiol. & Pharmacol., 57, 443–460 (1979).CrossRefGoogle Scholar
  19. Van Nueten, J.M. and Wellens, D. Tissue specificity of calcium-antagonistic properties of lidoflazine. Arch. int. Pharmacodyn. & Ther., 242, 329–331 (1979).Google Scholar
  20. Van Nueten, J.M. and Vanhoutte, P.M. Calcium entry blockers and vasospasm. In: “Vasodilatation”, ed. P.M. Vanhoutte and I. Leusen, Publ. Raven Press, New York (1981).Google Scholar
  21. Zimmerman, A.N.E. and Hülsmann, W.C. Paradoxical influence of calcium ions on the permeability of the cell membrane of the isolated rat heart. Nature, 211, 646–647 (1966).PubMedCrossRefGoogle Scholar

Copyright information

© Martinus Nijhoff Publishers, The Hague 1984

Authors and Affiliations

  • M. Borgers
  • W. Flameng

There are no affiliations available

Personalised recommendations