Skip to main content

Approaches to Radiolabelling Blood-Cells: Past, Present and Future

  • Chapter
  • 63 Accesses

Part of the book series: Developments in Nuclear Medicine ((DNUM,volume 6))

Abstract

The importance of cellular blood-elements in health and disease can never be overemphasized. Associated with every organic illness there is an involvement of blood-cells. The view that disturbances in structure or functions of individual cells form the basis of disease was first put forth by Rudolph Virchow in 1858 (1). For decades thereafter our understanding of cellular involvement was limited to the data derived from fixed images of cells under the light microscope. Over the past 25 years interest in blood-cells has intensified and a new and multidisciplinary science of cell pathology has emerged. Advances in optical and cell separation techniques, tissue culture, and in the knowledge of cell function have made it possible to categorize diseases and identify the type of blood-cells involved. These have provided a sound basis for studies with radiolabelled blood-cells, a technique that has become increasingly popular and has served as an effective research tool.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Virchow R, Die celluläre Pathologie in ihrer Begründung auf physiologische und pathologische Gewebelehre, Berlin 1958.

    Google Scholar 

  2. Thakur ML, Gottschalk A, Role of radiopharmaceuticals in Nuclear Hematology. Radiopharmaceuticals II, Soc. of Nucl. Med. New York, pp 349–359, 1979.

    Google Scholar 

  3. Perry S, Goodwin HA, Zimmerman TS, Physiology of Granulocytes, part I, Jama 203: 937, 1968.

    Article  PubMed  CAS  Google Scholar 

  4. Rubini JR, Westcott E, Keller S, In vitro DNA labelling of bone-marrow and leukemia blood leukocytes with tritiated thymidine-II. H-3 thymidine biochemistry, in vitro. J. Lab. clin. Med. 68:566, 1966.

    CAS  Google Scholar 

  5. Cooley H, Gardner FH, The use of selenomethionine (se-75) as a label for canine and human platelets. Amer. Soc. Clin. Inv. 44: 1036, 1965 (abstract).

    Google Scholar 

  6. Penner JA, Meyers MC, Methionine-75Se uptake in circulating blood cells and plasma proteins. J. Lab. clin. Med. 68: 1005, 1966, (abstract).

    Google Scholar 

  7. McIntyre PA, Evatt B, Hodkinson BA et al, Selenium-75, selenomethionine as a label for erythrocytes, leukocytes and platelets in man, J. Lab, clin. Med. 74: 472, 1980.

    Google Scholar 

  8. Grobb D, Lilienthal JL jr, Harvey AM et al, The administration of Di-isopropyl fluorophosphate (DFP) to man, Bull. Johns Hopk. Hosp. 81: 217, 1947.

    Google Scholar 

  9. Cohen JA, Warringa MGPJ, The effect of P32 labelled diisopropylfluorophosphate in the human body and its use as labelling agent in the study of the turnover of blood plasma and red cells, J. clin. Invest. 33: 459, 1954.

    Article  PubMed  CAS  Google Scholar 

  10. Leeksma CHW, Cohen JA, Determination of the life span of human platelets using labelled DFP. J. clin. Invest. 35: 964, 1956.

    Article  PubMed  CAS  Google Scholar 

  11. Athens JW, Mauer AM, Ashenbrucker H et al, Leukokinetic Studies I, A method for labelling leukocytes with DF32P. Blood 14: 303, 1959.

    PubMed  CAS  Google Scholar 

  12. Mauer AM, Athens JW, Ashenbrucker H et al, Leukocyte kinetics II, a method for labelling granulocytes in vitro with radioactive DFP32. J. clin. Invest. 39: 1681, 1960.

    Article  Google Scholar 

  13. Athens JW, Haab OP, Raab SO et al, Leukocykinetic studies IV. The total blood, circulating and marginal granulocytes, turnover rate in normal subjects. J. clin. Invest. 40: 989, 1961.

    Article  PubMed  CAS  Google Scholar 

  14. Raab SO, Athens JW, Haab OP et al, Granulokinetics in normal dogs, Amer. J. Path. 206: 83, 1964.

    CAS  Google Scholar 

  15. Mizuno NS, Perman V, Bates FW et al, Lifespan of thrombocytes and erythrocytes in normal and thrombopenic calves. Blood, 14: 708, 1959.

    PubMed  CAS  Google Scholar 

  16. Callahan RJ, Froelich JW, McKusick KA et al, A modified method for the in vivo labelling of red blood cells with Tc-99m: concise communication. J. nucl. Med. 23: 315, 1982.

    PubMed  CAS  Google Scholar 

  17. Berger HJ, Matthay RA, Pytlik LM et al, First-pass radionuclide assessment of right and left ventricular performance in patients with cardiac and pulmonary disease. Semin. Nucl. Med. 9: 275, 1979.

    Article  PubMed  CAS  Google Scholar 

  18. Uchida T, Tasunaga K, Kaniyone S et al, Survival and sequestration of 51Cr and 99mTcO4-labelled platelets. J. nucl. Med. 15: 801, 1974.

    PubMed  CAS  Google Scholar 

  19. Linhart N, Bok B, Mergman M et al, Technetium-99m labeled human leukocytes: in vitro and animal studies. In: Indium-111 labeled neutrophils, platelets and lymphocytes. Thakur ML, Gottschalk A (eds), Trivirum Pub. Co., New York, pp 69–78, 1980.

    Google Scholar 

  20. McAfee J, Thakur ML, Survey of radioactive agents for in vitro labelling of phagocytic leukocytes, II, Particles 488: 292, 1976.

    Google Scholar 

  21. Oberhausen E, Schroth HJ, Phagocytosis labelling of migratory blood cells and its applications. Labelled migratory blood cells. Third World Congress, Post Congress Symposium, Graz, 1982.

    Google Scholar 

  22. Thakur ML, Segal AW, Louis L et al, Indium-111 labelled cellular blood components, Mechanism of labelling and intracellular location in human neutrophils. J. nucl. Med. 18: 1020, 1977.

    Google Scholar 

  23. Thakur ML, Gottschalk A (eds), Indium-111 labeled neutrophils, platelets and lymphocytes, Trivirum Pub. Co. New York, 1980.

    Google Scholar 

  24. Cell labelling with gamma emitting radionuclide for in vivo study, Proc. Brit. Inst. of Radiol. Brit. J. Radiol. 53: 922, 1980.

    Article  Google Scholar 

  25. This volume.

    Google Scholar 

  26. Klonizakis I, Peters AM, Fitzpatrick ML et al, Radionuclide distribution following injection of 111In-labelled platelets. Brit. J. Haemat. 46: 595, 1980.

    Article  PubMed  CAS  Google Scholar 

  27. Thakur ML, Coleman RE, Welch MJ, Indium-111 labelled human leukocytes for abscess localization; preparation, analysis, tissue distribution and comparison with Ga-67 citrate in dogs. J. Lab. clin. Med. 89: 217, 1977.

    PubMed  CAS  Google Scholar 

  28. Thakur ML, Walsh L, Malech HL et al, Indium-111 labelled human platelets; improved method, efficacy and evaluation. J. nucl. Med. 22: 381, 1981.

    PubMed  CAS  Google Scholar 

  29. Goedemans WTH, Simplified cell labelling with In-111 acetylacetone and Indium-111 oxinate. Brit. J. Radiol. 54: 636, 1981.

    Article  PubMed  CAS  Google Scholar 

  30. Sinn H, Silvester DJ, Simplified cell labelling with In-111 acetylacetone. Brit. J. Radiol. 52: 758, 1979.

    Article  PubMed  CAS  Google Scholar 

  31. Dewanjee MK, Rao SH, Didisheim P, Indium-111 tropolone, a new high affinity platelet label; preparation and evaluation of labelling parameters. J. nucl. Med. 22: 981, 1981.

    PubMed  CAS  Google Scholar 

  32. Danpure HJ, Osman S, Brady F, The labelling of blood cells in plasma with 111In-tropolonate. Brit. J. Radiol. 543–247, 1982.

    Google Scholar 

  33. Thakur ML, Lavender JP, Arnot RN et al, Indium-111 labeled leukocytes in man. J. nucl. Med. 18: 1012, 1977.

    Google Scholar 

  34. Boyum A, Isolation of mononuclear cells from granulocytes from human blood. Scan. J. clin. Invest. 21:97, suppl. 1968.

    Google Scholar 

  35. Corash L, Shafer B, Perlow M, Heterogeneity of human whole blood platelet subpopupations II. Use of subhuman primate model tot analyze the relationship between density and platelet age. Blood 52: 726, 1978.

    PubMed  CAS  Google Scholar 

  36. Herzenberg LA, Sweet RG, Fluorescence-activated cell sorting. Scientific American 232: 108, 1978.

    Google Scholar 

  37. Zoghbi SS, Thakur ML, Gottschalk A et al, Selective cell labelling; a potential radioactive agent for labelling of human neutrophils. J. nucl. Med. 22: 32, 1981 (abstract).

    Google Scholar 

  38. Schiffman E, Corioran BA, Wahl SM, Formylmethionyl peptides as chemoattractants for leukocytes. Proc. Nat. Acad. Sci. USA 72: 1059, 1975.

    Article  Google Scholar 

  39. Goldstein IM, Chemotactic factor receptors on leukocytes; scratching the surface (editorial). J. Lab, clin. Med. 97: 599, 1981.

    CAS  Google Scholar 

  40. Thakur ML, Barry MJ, Preparation and evaluation of a new indium-111 agent for efficient labelling of human platelets in plasma. 4th Internat. Symp. on Radiopharm. Chem. pp 140–142, JUlich, 1982.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1984 Martinus Nijhoff Publishers, The Hague

About this chapter

Cite this chapter

Thakur, M.L. (1984). Approaches to Radiolabelling Blood-Cells: Past, Present and Future. In: Hardeman, M.R., Najean, Y. (eds) Blood cells in nuclear medicine, part I. Developments in Nuclear Medicine, vol 6. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-6027-5_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-6027-5_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-009-6029-9

  • Online ISBN: 978-94-009-6027-5

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics