Advertisement

C

Chapter
  • 1.1k Downloads
Part of the Encyclopaedia of Mathematics book series (ENMA, volume 2)

References

  1. [1]
    Gel’fand, I.M. and Neumark, M.A. [M. A. Namark]: ‘On the imbedding of normed rings in the rings of operators in Hilbert space’, Mat. Sb. 12 (54), no. 2 (1943), 197–213.MathSciNetGoogle Scholar
  2. [2]
    Namark, M.A.: Normed rings, Reidel, 1984 (translated from the Russian).Google Scholar
  3. [3]
    Dixmier, J.: C* algebras, North-Holland, 1977 .zbMATHGoogle Scholar
  4. [4]
    Sakai, S.: C*-algebras and W*-algebras, Springer, 1971.Google Scholar
  5. [5]
    Ruelle, D.: Statistical mechanics: rigorous results, Benjamin, 1974.Google Scholar
  6. [6]
    Douglas, R.G.: Banach algebra techniques in operator theory, Academcic Press, 1972.zbMATHGoogle Scholar
  7. [A1]
    Atiyah, M.F.: ‘Global theory of elliptic operators’, in Proc. Internal Conf. Funct. Anal. Related Topics, Univ. Tokyo Press, 1970.Google Scholar
  8. [A2]
    Blackadar, B.: K-theory for operator algebras, Springer, 1986.zbMATHGoogle Scholar
  9. [A3]
    Brown, L.G., Douglas, R.G. and Filmore, P.A.: ‘Extensions of C*-algebras and K-homology’, Ann. of Math. (2) 105 (1977), 265–324.MathSciNetCrossRefzbMATHGoogle Scholar
  10. [A3]
    A4] Connes, A.: ‘Non-commutative differential geometry’, Publ. Math. IHES 62 (1986), 257–360.Google Scholar
  11. [A5]
    Douglas, R.G.: C*-algebra extensions and K-homology, Princeton Univ. Press, 1980.zbMATHGoogle Scholar
  12. [A6]
    Jones, V.F.R.: ‘A polynomial invariant for knots via von Neumann algebras’, Bull. Amer. Math. Soc. 12 (1985), 103–111.MathSciNetCrossRefzbMATHGoogle Scholar
  13. [A7]
    Kasparov, G.G.: ‘The generalized index of elliptic operators’, Funct. Anal, and Its Appl. 7 (1973), 238–240. (Funkt. Anal, i Prilozhen. 7 (1973), 82–83)MathSciNetCrossRefGoogle Scholar
  14. [A8]
    Kasparov, G.G.: ‘Topological invariants of elliptic operators I. K-homology’, Math. USSR-lzv. 9 (1975), 751–792. (Izv. Akad. Nauk SSSR 4 (1975), 796–838 )MathSciNetCrossRefGoogle Scholar
  15. [A9]
    Takesaki, M.: Theory of operator algebras, 1, Springer, 1979.CrossRefzbMATHGoogle Scholar
  16. [1]
    Kuratowski, K.: Topology, 1, Acad. Press, 1966 (translated from the French).Google Scholar
  17. [1]
    Post, E. L.: ‘Formal reductions of the general combinatorial decision problem’, Amer. J. Math. 65 (1943), 197–215.MathSciNetCrossRefzbMATHGoogle Scholar
  18. [2]
    Markov, A. A.: Theory of algorithms, Israel Progr. Sci. Transl., 1961 (translated from the Russian) Also: Trudy Mat. Inst. Steklov. 42 (1954).Google Scholar
  19. [A]
    Trudy. Mat. Inst. Steklov. 72 (1964), 5–56.Google Scholar
  20. [B]
    Trudy. Mat. Inst. Steklov. 93 (1967), 3–42.Google Scholar
  21. [1]
    Hilbert, D. and Ackerman, W.: Grundzüge der theoretischen Logik, Dover, reprint, 1946.Google Scholar
  22. [2]
    Couturat, L.: L’algèbre de la logique, Gauthier-Villars, 1905.Google Scholar
  23. [3]
    Wajsberg, M.: ‘Ein erweiterter Klassenkalkül’, Monatsh. Math. Phys. 40 (1933), 113–126.MathSciNetCrossRefzbMATHGoogle Scholar
  24. [4]
    Lukasiewicz, J.: Aristotle’s syllogistic from the standpoint of modern formal logic, Clarendon Press, 1951.Google Scholar
  25. [5]
    Yanovskaya, S.: ‘The logic of classes’, in Philosophical Encyclopaedia, Vol. 3, Moscow, 1964, pp. 224–226 (in Russian).Google Scholar
  26. [1]
    Calderón, A.P. and Zygmund, A.: ‘On the existence of certain singular integrals’, Acta Math. 88 (1952), 85–139.MathSciNetCrossRefzbMATHGoogle Scholar
  27. [2]
    Mikhlin, S.G.: Multidimensional singular integrals and integral equations, Pergamon, 1965 (translated from the Russian).Google Scholar
  28. [3]
    Stein, E.M.: Singular integrals and differentiability properties of functions, Princeton Univ. Press, 1970zbMATHGoogle Scholar
  29. [A1]
    Mikhlin, S.G.: ‘On a boundedness theorem for a singular integral operator’, Uspekhi Mat. Nauk 8 (1953), 213–217 (in Russian).MathSciNetGoogle Scholar
  30. [A2]
    David, G. and Journé, J.L.: Une characterization des opérateurs intégraux singuliers bornés sur L2(Rn)1, C.R. Acad. Sci. Paris 296 (1983), 761–764.zbMATHGoogle Scholar
  31. [A3]
    Stein, E.M. and Weiss, G.: Fourier analysis on Euclidean spaces, Princeton Univ. Press, 1975.Google Scholar
  32. [A1]
    Argyros, S. and Tsarpalias, A.: ‘Calibers of compact spaces’, Trans. A.Er. Math. Soc. 270 (1982), 149–162.MathSciNetCrossRefzbMATHGoogle Scholar
  33. [A2]
    Broverman, S., Ginsburg, J., Kunen, K. and Tall, F. D.: Topologies determined by α-ideals on A1 Canad. J. Math. 30 (1978), 1306–1312.MathSciNetCrossRefzbMATHGoogle Scholar
  34. [A3]
    Comfort, W. W. and Negrepontis, S.: Chain conditions in topology, Cambridge Univ. Press, 1982.zbMATHGoogle Scholar
  35. [A4]
    Juhasz, I.: Cardinal functions in topology - Ten years later, MC Tracts, 123, Math. Centre, Amsterdam, 1980.zbMATHGoogle Scholar
  36. [1A]
    Campbell, J. E.: Proc. London Math. Soc. 28 (1897), 381–390.CrossRefzbMATHGoogle Scholar
  37. [1B]
    Campbell, J. E.: Proc. London Math. Soc. 29 (1898), 14–32.CrossRefzbMATHGoogle Scholar
  38. [2]
    Hausdorff, F.: ‘Die symbolische Exponential Formel in der Gruppentheorie’, Leipziger Ber. 58 (1906), 19–48.Google Scholar
  39. [3]
    Bourbaki, N.: Elements of mathematics. Lie groups and Lie algebras, Addison-Wesley, 1975 (translated from the French).zbMATHGoogle Scholar
  40. [4]
    Serre, J.-P.: Lie algebras and Lie groups, Benjamin, 1965 (translated from the French).zbMATHGoogle Scholar
  41. [5]
    Théorie des algèbres de Lie. Topologie des groupes de Lie’, in Sém. S. Lie.Google Scholar
  42. [6]
    Magnus, W., Karras, A. and Solitar, D.: Combinatorial group theory: presentations of groups in terms of generators and relations, Inter science, 1966.Google Scholar
  43. [A1]
    Baker, H. F.: ‘Alternants and continuous groups’, Proc. London Math. Soc. (2) 3 (1905), 24–47.CrossRefzbMATHGoogle Scholar
  44. [A2]
    Varadarajan, V. S.: Lie groups, Lie algebras, and their representations, Springer, 1984, Section 2. 15.zbMATHGoogle Scholar
  45. [A2]
    Monge, G.: Application de l’analyse à la géométrie, Bachelier, 1850, Chapt. 8.zbMATHGoogle Scholar
  46. [A2]
    Lie, S.: ‘Ueber Complexe, insbesondere Linien- und Kugel- Complexe, mit Anwendung auf die Theorie partieller Differentialgleichungen’, Math. Ann. 5 (1872), 179.Google Scholar
  47. [A3]
    Scheffers, G.: Einführung in die Theorie der Flächen, Teubner, 1913.Google Scholar
  48. [A4]
    Blaschke, W. and Leichtweiss, K.: Elementare Differential-geometrie, Springer, 1973.Google Scholar
  49. [A5]
    Berger, M. and Gostiaux, B.: Géométrie différentielle: varietés, courbes et surfaces, Presses Univ. de France, 1987.zbMATHGoogle Scholar
  50. [1]
    Shafarevich, I. R.: Basic algebraic geometry, Springer, 1977 (translated from the Russian).zbMATHGoogle Scholar
  51. [A1]
    Iitaka, S.: Algebraic geometry, Springer, 1982.zbMATHGoogle Scholar
  52. [1]
    Hotelling, H.: ‘Relations between two sets of variates’, Biometrika 28 (1936), 321–377.zbMATHGoogle Scholar
  53. [2]
    Anderson, T. W.: Introduction to multivariate statistical analysis, Wiley, 1958.zbMATHGoogle Scholar
  54. [3]
    Kendall, M. G., Ord, J. K. and Stuart, A.: The advanced theory of statistics. Design and analysis, and time series, 3, Griffin, 1983.Google Scholar
  55. [1]
    Shafarevich, I. R.: Basic algebraic geometry, Springer, 1977 (translated from the Russian).zbMATHGoogle Scholar
  56. [2A]
    Dieudonné, J. A.: La géométrie des groups classiques, Springer, 1955.Google Scholar
  57. [2B]
    Mumford, D.: Geometric invariant theory, Springer, 1965.zbMATHGoogle Scholar
  58. [3]
    Walker, R. J.: Algebraic curves, Springer, 1978.CrossRefzbMATHGoogle Scholar
  59. [4]
    Severi, F.: Vorlesungen iiber algebraische Geometrie, Teubner, 1921.Google Scholar
  60. [A1]
    Arbarello, E., Cornalba, M., Griffiths, P. A. and Harris, J.: Geometry of algebraic curves, 1, Springer, 1984.Google Scholar
  61. [A2]
    Mumford, D.: Curves and their Jacobians, Univ. Michigan Press, 1976.Google Scholar
  62. [1]
    Shafarevich, I. R.: Basic algebraic geometry, Springer, 1977 (translated from the Russian).zbMATHGoogle Scholar
  63. [2]
    Severi, F.: Vorlesungen iiber algebraische Geometrie, Teubner (translated from the Italian).Google Scholar
  64. [3]
    Algebraic surfaces’, Trudy Mat. Inst. Steklov. 75 (1965) (in Russian).Google Scholar
  65. [4]
    Bombieri, E. and Husemoller, D.: ‘Classification and embed- dings of surfaces’, in Proc. Symp. Pure Math., Vol. 29, Amer. Math. Soc., 1975, pp. 329–420.Google Scholar
  66. [5]
    Ueno, K.: ‘Introduction to classification theory of algebraic varieties and compact complex spaces’, in Lecture Notes in Math., Vol. 412, Springer, 1974, pp. 288–332.Google Scholar
  67. [A1]
    Ueno, K.: Classification theory of algebraic varieties and compact complex spaces, Springer, 1975.zbMATHGoogle Scholar
  68. [A2]
    Iitaka, S.: Algebraic geometry, an introduction to birational geometry of algebraic varieties, Springer, 1982.zbMATHGoogle Scholar
  69. [A3]
    Barth, W., Peters, C. and Ven, A. van de: Compact complex surfaces, Springer, 1984.zbMATHGoogle Scholar
  70. [A4]
    Arbarello, E., Cornalba, M., Griffiths, P. A. and Harris, J. E.: Geometry of algebraic curves, 1, Springer, 1985.zbMATHGoogle Scholar
  71. [A5]
    Griffiths, P. A. and Harris, J. E.: Principles of algebraic geometry, Wiley, 1978.zbMATHGoogle Scholar
  72. [1]
    Levin, B. Ya.: The distribution of zeros of entire functions, Amer. Math. Soc., 1980 (translated from the Russian).Google Scholar
  73. [1]
    Hurwitz, A. and Courant, R.: Vorlesungen uber allgemeine Funktionentheorie und elliptische Funktionen, 1, Springer, 1964, Chapt.8.Google Scholar
  74. [2]
    Schiffer, M. and Spencer, D. C.: Functional of finite Riemann surfaces, 1954.Google Scholar
  75. [1]
    Aleksandrov, P. S.: Introduction to set theory and general topology, Moscow, 1977 (in Russian).Google Scholar
  76. [2]
    Arkhangel’ski, A. V. and Ponomarev, V. I.: Fundamentals of general topology: problems and exercises, Reidel, 1984 (translated from the Russian).Google Scholar
  77. [1]
    Urysohn, P. S.: Works in topology and other areas of mathematics, 2, Moscow-Leningrad, 1951 (in Russian).Google Scholar
  78. [2]
    Menger, K.: Kurventheorie, Teubner, 1932.Google Scholar
  79. [A1]
    Engelking, R.: Dimension theory, North-Holland and PWN, 1978.zbMATHGoogle Scholar
  80. [1]
    Urysohn, P. S.: Works in topolog and other areas of mathematics, 1, Moscow-Leningrad, 1951 (in Russian).Google Scholar
  81. [2]
    Alexandroff, P [P. S. Aleksandrov]: ‘Untersuchungen iiber Gestalt und lage abgeschlossener Menge beliebiger Dimension’, Ann. of Math. 30 (1929), 101–187.MathSciNetCrossRefGoogle Scholar
  82. [3]
    Aleksandrov, P. S.: ‘On the dimension of normal spaces’, Proc. Royal Soc. London Ser. A 189 (1947), 11–39.CrossRefGoogle Scholar
  83. [4]
    Aleksandrov, P. S. and Pasynkov, B. A.: Introduction to dimension theory, Moscow, 1973 (in Russian).Google Scholar
  84. [5]
    Fedorchuk, V. V.: ‘On dimensional components of compact spaces’, Soviet Math. Dokl. 15, no$12 (1974), 505–509. (Dokl. Akad Nauk SSSR 215, no. 2 (1974), 289–292 )Google Scholar
  85. [6]
    Menger, K.: Dimensionstheorie Teubner, 1928.zbMATHGoogle Scholar
  86. [7]
    Sklyarenko, E. G.: ‘Dimensionality properties of infinite-dimensional spaces’, Izv. Akad. Nauk SSSR Ser. Mat. 23, no. 2 (1959), 197–212 (in Russian).MathSciNetzbMATHGoogle Scholar
  87. [A1]
    Urysohn, P. S.: ‘Mémoire sur les multipliers cantoriennes’, Fund. Math. 7 (1925), 30–137.zbMATHGoogle Scholar
  88. [A2]
    Engelking, R.: Dimension theory, PWN and North-Holland, 1978.zbMATHGoogle Scholar
  89. [A3]
    Hurewicz, W. and Menger, K.: ‘Dimension and Zusammenhangsstuffe’, Math. Ann. 100 (1928), 618–633.MathSciNetCrossRefzbMATHGoogle Scholar
  90. [A4]
    Mazurkiewicz, S.: ‘Ein Satz über dimensioned Komponenten’, Fund. Math. 20 (1933), 98–99.Google Scholar
  91. [A5]
    Menger, K.: ‘Über die dimension von Punktmengen II’, Monatsh. für Math, and Phys. 34 (1926), 137–161.MathSciNetCrossRefzbMATHGoogle Scholar
  92. [A6]
    Tumarkin, L. A.: ‘Sur la structure dimensionelle des ensembles fermés’, C.R. Acad. Paris 186 (1928), 420–422.zbMATHGoogle Scholar
  93. [1]
    Aleksandrov, P. S.: An introduction to set theory and general topology, Moscow, 1977 (in Russian).Google Scholar
  94. [1]
    Arkhangel’ski, A. V. and Ponomarev, V. I.: Fundamentals of general topology: problems and exercises, Reidel, 1984 (translated from the Russian).Google Scholar
  95. [A2]
    Hewitt, E. and Stromberg, K.: Real and abstract analysis, Springer, 1965.zbMATHGoogle Scholar
  96. [1]
    Cantor, G.: ‘Gesammelte Abhandlungen’, E. Zermelo (ed. ), Springer, 1932.Google Scholar
  97. [2]
    Hausdorff, F.: Gründzuge der Mengenlehre, Leipzig, 1914. Reprinted (incomplete) English translation: Set theory, Chelsea (1978).Google Scholar
  98. [3]
    Kuratowski, K. and Mostowski, A.: Set theory, North-Holland, 1968.zbMATHGoogle Scholar
  99. [4]
    Alexandroff, P. S. [P. S. Aleksandrov]: Einführung in die Mengenlehre und in die allgemeine Topologie, Deutsch. Verlag Wissenschaft., 1984 (translated from the Russian).Google Scholar
  100. [5]
    Bourbaki, N.: Elements of mathematics. General topology, Addison-Wesley, 1966 (translated from the French).Google Scholar
  101. [6]
    Bary, N. K. [N. K. Bari]: A treatise on trigonometric series, Pergamon, 1964 (translated from the Russian).zbMATHGoogle Scholar
  102. [7]
    Whittaker, E. T. and Watson, G. N.: A course of modern analysis, Cambridge Univ. Press, 1952.Google Scholar
  103. [8]
    Cantor, G.: ‘EIN Beitrag zur Mannigfaltigkeitslehre’, J. Reine Angew. Math. 84 (1878), 242–258.CrossRefGoogle Scholar
  104. [9]
    Cantor, G.: ‘Über trigonometrische Reihen’, Math. Ann. 4 (1871), 139–143.MathSciNetCrossRefGoogle Scholar
  105. [10]
    Cantor, G.: ‘Beiträge zur Begründung des transfiniten Mengenlehre’, Math. Ann. 49 (1897), 207–246.MathSciNetCrossRefzbMATHGoogle Scholar
  106. [11]
    Cantor, G.: ‘Uber unendliche lineare Punktmannigfaltig-keiten’, Math. Ann. 17 (1880), 355–358.MathSciNetCrossRefGoogle Scholar
  107. [12]
    Borel, E.: Leçons sur la théorie des fonctions, Gauthier-Villars, 1928.zbMATHGoogle Scholar
  108. [13]
    Heine, E.: ‘Die Elemente der Funktionenlehre’, J. Reine Angew. Math. 74 (1872), 172–188.CrossRefGoogle Scholar
  109. [14]
    Lindelöf, E.: ‘Remarque sur une théorème fondamental de la sthéorie des ensembles’, Acta Math. 29 (1905), 183–190.MathSciNetCrossRefzbMATHGoogle Scholar
  110. [15A]
    Cantor, G.: ‘Uber eine die trigonometrischen Reihen betref-fenden Lehrsatz’, J. Reine Angew. Math. 72 (1870), 130–138.CrossRefGoogle Scholar
  111. [15B]
    Cantor, G.: ‘Beweis, dass eine für jeden reellen Wert von x durch eine trigonometrische Reihe gegebene Funktion f(x) sich nur auf eine einzige Weise in dieser Form darstellen lässt’, J. Reine Angew. Math. 72 (1870), 139–142.CrossRefGoogle Scholar
  112. [16]
    Cantor, G.: ‘Uber unendliche lineare Punktmannigfaltig- keiten’, Math. Ann. 21 (1883), 51–58.MathSciNetCrossRefGoogle Scholar
  113. [17]
    Bendixson, L.: ‘Quelques théorèmes de la théorie des ensem-bles de points’, Acta Math. 2 (1883), 415–429.MathSciNetCrossRefzbMATHGoogle Scholar
  114. [18]
    Lebesgue, H.: Leçons sur les séries trigonometriques, Gauthier- Villars, 1906.zbMATHGoogle Scholar
  115. [19]
    Young, W. H.: Proc. Roy. Soc. 87 (1912), 331–339.Google Scholar
  116. [20]
    Bourbaki, N.: Eléments d’histore des mathématiques, Hermann, 1960.Google Scholar
  117. [1]
    Bose, R. C.: ‘Mathematical theory of the symmetrical factorial design’, Shankhyā 8 (1947), 107–166.zbMATHGoogle Scholar
  118. [2]
    Hill, R.: ‘Caps and codes’, Discrete Math. 22, no. 2 (1978), 111–137.MathSciNetCrossRefzbMATHGoogle Scholar
  119. [3]
    Segre, B.: ‘Introduction to Galois geometries’, Atti Accad. Naz. Lincei Mem. 8 (1967), 133–236.MathSciNetGoogle Scholar
  120. [1]
    Landkof, N. S.: Foundations of modern potential theory, Springer, 1972 (translated from the Russian).zbMATHGoogle Scholar
  121. [2]
    Brélot, M.: Eléments de la théorie classique du potential, Sorbonne Univ. Centre Doc. Univ., Paris, 1959.Google Scholar
  122. [3]
    Pólya, G. and Szegö, G.: Isoperimetric inequalities in mathematical physics, Princeton Univ. Press, 1951.zbMATHGoogle Scholar
  123. [4]
    Brélot, M.: Lectures on potential theory, Tata Inst. Fundam. Res., 1960.zbMATHGoogle Scholar
  124. [5]
    Dellacherie, C.: Capacités et processus stochastiques, Springer, 1972.zbMATHGoogle Scholar
  125. [6]
    Carleson, L.: Selected problems on exceptional sets, van Nostrand, 1967.zbMATHGoogle Scholar
  126. [7]
    Vitushkin, A. G.: ‘Uniform approximation by holomorphic functions’, J. Soviet Math. 5, no. 5 (1976), 607–611. (Itogi Nauk. i Tekhn. Sovrem. Pobl Mat. 4 (1975), 5-12)CrossRefzbMATHGoogle Scholar
  127. [A1]
    Constantinescu, C. and Cornea, A.: Potential theory on harmonic spaces, Springer, 1972.zbMATHGoogle Scholar
  128. [A2]
    Doob, J. L.: Classical potential theory and its probabilistic counterpart, Springer, 1984.CrossRefzbMATHGoogle Scholar
  129. [A3]
    Tsuji, M.: Potential theory in modern function theory, Chelsea, reprint, 1975.zbMATHGoogle Scholar
  130. [A4]
    Korevaar, J.: ‘Green functions, capacities, polynomial approximation numbers and applications in real and complex analysis’, Nieuw Archief voor Wiskunde IV 4, no. 2 (1986), 133–153.MathSciNetzbMATHGoogle Scholar
  131. [1]
    Carathéordory, C.: ‘Über den Variabilitätsbereich der Koeffizienten von Potenzreihen, die gegebene Werte nicht annehmen’, Math. Ann. 64 (1907), 95–115.MathSciNetCrossRefzbMATHGoogle Scholar
  132. [2]
    Carathéodory, C.: ‘Über den Variabilitätsbereich der Fourier’schen Konstanten von positiven harmonischen Funktionen’, Rend. Cire. Mat. Palermo 32 (1911), 193–217.CrossRefzbMATHGoogle Scholar
  133. [3]
    Toeplitz, O.: ‘Uber die Fourier’sche Entwicklung positiver Funktionen’, Rend Cire. Mat. Palermo 32 (1911), 191–192.CrossRefGoogle Scholar
  134. [4]
    Riesz, F.: ‘Sur certains systèmes singuliers d’équations intégrales’, Ann. Sci. Ecole Norm. Super. 28 (1911), 33–62.MathSciNetGoogle Scholar
  135. [5]
    Herglotz, G.: ‘Uber Potenzreihen mit positiven, reellen Teil im Einheitskreis’, Ber. Verhandl. Sachs. Akad Wiss. Leipzig. Math. -Nat. Kl. 63 (1911), 501–511.Google Scholar
  136. [6]
    Goluzin, G. M.: Geometrie theory of functions of a complex variable, Amer. Math. Soc., 1969 (translated from the Russian).Google Scholar
  137. [1]
    Carathéodory, C: ‘Untersuchungen über die konformen Abbildungen von festen und veränderlichen Gebieten’, Math. Ann. 72 (1912), 107–144.MathSciNetCrossRefGoogle Scholar
  138. [2]
    Markushevich, A. I.: Theory of functions of a complex variable, 3, Chelsea, 1977, Chapt. 2 (translated from the Russian).zbMATHGoogle Scholar
  139. Carathéodory, C. and Fejér, L.: ‘Ueber den Zusammenhang der Extremen von harmonischen Funktionen mit ihren Koeffizienten und den Picard-Landau’schen Satz’, Rend. Circ. Mat. Palermo 32 (1911), 218–239.CrossRefGoogle Scholar
  140. [2]
    Goluzin, G. M.: Geometrie theory of functions of a complex variable, Amer. Math. Soc., 1969(translated from the Russian).Google Scholar
  141. [1]
    Carathéodory, C.: ‘Ueber das lineare Mass von Punktmengen, eine Verallgemeinerung des Längenbegriffs’, Nachr. Gesell. Wiss. Göttingen (1914), 404–426.Google Scholar
  142. [2]
    Saks, S.: Theory of the integral, Hafner, 1952 (translated from the Polish).Google Scholar
  143. [3]
    Halmos, P. R.: Measure theory, v. Nostrand, 1950.zbMATHGoogle Scholar
  144. [A1]
    Hewitt, E. and Stromberg, K.: Real and abstract analysis, Springer, 1965.zbMATHGoogle Scholar
  145. [1]
    Carathéodory, C: ‘Untersuchungen über die konformen Abbildungen von festen und veränderlichen Gebieten’, Math. Ann. 72 (1912), 107–144.MathSciNetCrossRefGoogle Scholar
  146. [2]
    Goluzin, G. M.: Geometrie theory of functions of a complex variable, Amer. Math. Soc., 1969 (translated from the Russian).Google Scholar
  147. [A1]
    Duren, P. L.: Univalent functions, Springer, 1983, Chapt. 3.zbMATHGoogle Scholar
  148. [1]
    Kurosh, A. G.: Higher algebra, Mir, 1972 (translated from the Russian).zbMATHGoogle Scholar
  149. [A1]
    Waerden, B. L. van der: Algebra, 1-2, Springer, 1967-1971 (translated from the German).Google Scholar
  150. [1]
    Juhasz, I.: Cardinal functions in topology, North-Holland, 1971.zbMATHGoogle Scholar
  151. [2]
    Arkhangel’ski, A. V. and Ponomarev, V. I.: Fundamentals of general topology: problems and exercises, Reidel, 1984 (translated from the Russian).Google Scholar
  152. [3]
    Engelking, R.: Outline of general topology, North-Holland, 1968 (translated from the Polish).zbMATHGoogle Scholar
  153. [4]
    Arkhangel’ski, A. V.: ‘Structure and classification of topological spaces, and cardinal invariants’, Russian Math. Surveys 33, no. 6 (1978), 33-96. (Uspekhi Mat. Nauk 33, no. 6 (1978)CrossRefGoogle Scholar
  154. [A1]
    Todorcevic, S.: ‘Forcing positive partition relations’, Trans. Amer. Math. Soc. 280 (1983), 703–720.MathSciNetCrossRefzbMATHGoogle Scholar
  155. [A2]
    Todorcevic, S.: ‘Remarks on cellularity in products’, Compos. Math. 57 (1986), 357–372.MathSciNetzbMATHGoogle Scholar
  156. [A3]
    Kunen, K. and Vaughan, J. E. (EDS.): Handbook of set- theoretic topology, North-Holland, 1984.zbMATHGoogle Scholar
  157. [A4]
    Juhász, I.: Cardinal functions. Ten years later, North- Holland, 1980.Google Scholar
  158. [1]
    Alexandroff, P. S. [P. S. Aleksandrov]: Einführung in die Mengenlehre und die allgemeine Topologie, Deutsch. Verlag Wissenschaft., 1984 (translated from the Russian).Google Scholar
  159. [2]
    Cantor, G.: New ideas in mathematics, Spravochn. Mat. BibL, Vol. 6, 1914, pp. 90–184 (in Russian).Google Scholar
  160. [3]
    Hausdorff, F.: Grundzüge der Mengenlehre, Leipzig, 1914. Reprinted (incomplete) English translation: Set theory, Chelsea, 1978.zbMATHGoogle Scholar
  161. [4]
    Kuratowski, K. and Mostowski, A.: Set theory, North- Holland, 1968.zbMATHGoogle Scholar
  162. [5]
    Sierpiński, W.: Cardinal and ordinal numbers, PWN, 1965 (translated from the Polish).zbMATHGoogle Scholar
  163. [A1]
    Jech, T.: Set theory, Acad. Press, 1978.Google Scholar
  164. [A2]
    Levy, A.: Basic set theory, Springer, 1979.zbMATHGoogle Scholar
  165. [1]
    Aleksandrov, P. S.: An introduction to set theory and general topology, Moscow, 1977 (in Russian).Google Scholar
  166. [1]
    Savelov, A. A.: Plane curves, Moscow, 1960 (in Russian).Google Scholar
  167. [A1]
    Lawrence, J. D.: A catalog of special plane curves, Dover, reprint, 1972.zbMATHGoogle Scholar
  168. [1]
    Carleman, T.: ‘Sur la théorie des équations intégrales et ses applications’, in Verhandl Internal Mathematiker-Kongresses, Vol. 1, Orell Füssli, Zürich-Leipzig, 1932, pp. 138–151.Google Scholar
  169. [2]
    Muskhelishvili, N. I.: Singular integral equations, Noordhoff, 1977 (translated from the Russian).Google Scholar
  170. [3]
    Vekua, N. P.: Systems of singular integral equations and certain boundary value problems, Moscow, 1970 (in Russian).Google Scholar
  171. [1]
    Carleman, T:: Wissenschaft. Vortrage 5. Kongress Skandinavischen Mathematiker, Helsinki, 1923, pp. 181–196.Google Scholar
  172. [2]
    Hardy, G. H.., Littlewood, J. E. and Pólya, G.: inequalities, Cambridge Univ. Press, 1934.Google Scholar
  173. [A1]
    Bullen, P. S., Mitrinović, D. S. and Vasić, P. M.: Means and their inequalities, Reidel, 1987.Google Scholar
  174. [1]
    Achiezer, N. I. [N. I. Akhiezer] and Glazman, I. M.: Theory of linear operators in Hilbert space, 1-2, Pitman, 1980 (translated from the Russian).Google Scholar
  175. [1]
    Carleman, T.: Les fonctions quasi-analytiques, Gauthier- Villars, 1926.zbMATHGoogle Scholar
  176. [2]
    Carleman, T.: Sur les équations intégrales singulières a noyau réel et symmétrique, Uppsala, 1923.Google Scholar
  177. [3]
    Carleman, T.: ‘Sur un théorème de Weierstrass’, Arkiv. Mat. Astron. Fys. 20, no. 4 (1927), 1–5.MathSciNetGoogle Scholar
  178. [4]
    Carleman, T.: ‘Uber die Approximation analytischer Funktionen durch lineare Aggregate von vorgegebenen Potenzen’, Arkiv. Mat. Astron. Fys. 17, no. 9 (1922).Google Scholar
  179. [5]
    Mandelbrojt, S.: Séries adhérentes, régularisation des suites, applications, Gauthier-Villars, 1952.zbMATHGoogle Scholar
  180. [6]
    Mergelyan, S. N.: ‘Uniform approximation to functions of a complex variable’, Translations Amer. Math. Soc. 3 (1962), 294–391. (Uspekhi Mat. Nauk 7, no. 2 (1952), 31-122)Google Scholar
  181. [A1]
    Gaier, D.: Vorlesungen über Approximation im Komplexen, Birkhaüser, 1980.zbMATHGoogle Scholar
  182. [A2]
    Levin, B. Ya.: Distribution of zeros of entire functions, Amer. Math. Soc., 1980 (translated from the Russian).Google Scholar
  183. [1]
    Carleson, L.: ‘Sets of uniqueness for functions regular in the unit circle’, Acta Math. 87, no. 3-4 (1952), 325–345.MathSciNetCrossRefzbMATHGoogle Scholar
  184. [2]
    Wik, I.: ‘On linear dependence in closed sets’, Arkiv. Mat. 4, no. 2-3 (1960), 209–218.MathSciNetCrossRefGoogle Scholar
  185. [3]
    Kahane, J.-P. and Salem, R.: Ensembles parfaits et séries trigonométriques, Hermann, 1963, p. 142.zbMATHGoogle Scholar
  186. [4]
    Kahane, J.-P.: Séries de Fourier absolument convergentes, Springer’ 197Google Scholar
  187. [A1]
    Helson, H.: ‘Fourier transforms on perfect sets’, Studia Math. 14(1954), 209–213.MathSciNetGoogle Scholar
  188. [A2]
    Varopoulos, N. Th.: ‘Sur la réunion de deux ensembles de Helson’, C.R. Acad. Sci. Paris Sér. A-B 271 (1970), A251-A253.MathSciNetGoogle Scholar
  189. [1]
    Luzin, N. N.: The integral and trigonometric series, 1, Moscow, 1953, pp. 48–212 (in Russian).Google Scholar
  190. [2]
    Carleson, L.: ‘Convergence and growth of partial sums of Fourier series’, Acta Math. 116 (1966), 135–157.MathSciNetCrossRefzbMATHGoogle Scholar
  191. [3]
    Hunt, R. A.: ‘On the convergence of Fourier series’, in Proc. Conf. Orthogonal Expansions and their Continuous Analogues, Southern Illinois Univ. Press, 1968, pp. 234–255.Google Scholar
  192. [4]
    Kolmogoroff, A. [A. N. Kolmogorov]: ‘Une série de Fourier-Lebesgue divergente presque partout’, Fund. Math. 4 (1923), 324–328.zbMATHGoogle Scholar
  193. [A1]
    Kolmogorov, A. N.: ‘Une série de Fourier-Lebesgue divergent partout’, C.R. Acad. Sci. Paris Sér A-B 183 (1926), 1327–1328.Google Scholar
  194. [A2]
    Mozzochi, C. J.: On the pointwise convergence of Fourier series, Lecture Notes in Math., 199, Springer, 1970.Google Scholar
  195. [A3]
    Jørsboe, O. G. and Mejlbro, L.: The Carleson - Hunt theorem on Fourier series, Lecture Notes in Math., 911, Springer, 1982.Google Scholar
  196. [1]
    Carlson, F.: ‘Une inégalité’, Ark. Math. Astron. Fys. 25B, no. 1 (1934), 1–5.Google Scholar
  197. [2]
    Hardy, G. H., Littlewood, J. E. and Pólya, G.: Inequalities, Cambridge Univ. Press., 1934.Google Scholar
  198. [1]
    Marchuk, G. I. and Lebedev, V. I.: Numerical methods in neutron transport theory, Atomizdat, Moscow, 1981 (in Russian).Google Scholar
  199. [2]
    Greenspan, H., Kelber, C. N. and Okrent, D. (EDS.): Computing methods in reactor physics, Gordon and Breach, 1969.Google Scholar
  200. [3]
    Bell, G. J. and Glasstone, S.: Nuclear reactor theory, v. Nostrand Reinhold, 1971.Google Scholar
  201. [1]
    Carnap, R.: The logical syntax of language, Kegan Paul, Trench & Truber, London, 1937 (translated from the German).Google Scholar
  202. [2]
    Kuznetsov, A. V.: Uspekhi Mat. Nauk 12, no. 4 (1957), 218–219.Google Scholar
  203. [3]
    Shoenfield, J. R.: ‘On a restricted w-rule’, Bull. Acad. Polon. Sci. CI. III 7 (1959), 405–407.MathSciNetGoogle Scholar
  204. [1]
    Carnot, L.: Géométrie de position, Paris, 1803.Google Scholar
  205. [A1]
    Widder, D. V.: The Laplace transform, Princeton Univ. Press, 1972.Google Scholar
  206. [A2]
    Doetsch, G.: Introduction to the theory and application of the Laplace transformation, Springer, 1974 (translated from the German).zbMATHGoogle Scholar
  207. [1]
    Helgason, S.: Differential geometry and symmetric spaces, Acad. Press, 1962.zbMATHGoogle Scholar
  208. [1]
    Cartan, E.: Les systèmes différentielles extérieurs et leur applications géométriques, Hermann, 1945.Google Scholar
  209. [A1]
    Cartan, E.: ‘Sur certaines expressions différentielles et le problème de Pfaff’, Ann. Ec. Norm. (3) 16 (1899), 239–332.MathSciNetGoogle Scholar
  210. [1]
    Jacobson, N.: Lie algebras, Interscience, 1962.zbMATHGoogle Scholar
  211. [2]
    Serre, J.-P.: Algebres de Lie semi-simples complexes, Benjamin, 1966.zbMATHGoogle Scholar
  212. [A3]
    Kac, V. G. [V. G. Kats]: ‘Simple irreducible graded Lie algebras of finite growth’, Math. USSR Izv. 2, no. 6 (1968), 1271–1311. (Ivz. Akad Nauk SSSR Ser. Mat. 32, no. 6 (1968), 1323–1367)CrossRefGoogle Scholar
  213. [A1]
    Humphreys, J. E.: Introduction to Lie algebras and representation theory, Springer, 1972.CrossRefzbMATHGoogle Scholar
  214. [A2]
    Kac, V. G.: Infinite dimensional Lie algebras, Cambr. Univ. Press, 1985.zbMATHGoogle Scholar
  215. [1]
    Curtis, C. W. and Reiner, I.: Representation theory of finite groups and associative algebras, Interscience, 1962.zbMATHGoogle Scholar
  216. [2]
    Humphreys, J. E.: ‘Modular representations of classical Lie algebras and semi-simple groups’, J. of Algebra 19 (1971), 51–79.MathSciNetCrossRefzbMATHGoogle Scholar
  217. [1]
    Cartan, E.: Les systèmes différentiells extérieurs et leurs appli-cation en géométrie Hermann, 1945.Google Scholar
  218. [2]
    Finikov, S. P.: Cartan’s method of exterior forms in differential geometry, 1–3, Moscow–Leningrad, 1948 (in Russian).Google Scholar
  219. [3]
    Helgason, S.: Differential geometry and symmetric spaces, Acad. Press, 1962.zbMATHGoogle Scholar
  220. [4]
    Cartan, E.: La géométrie des espaces de Riemann, Mém. Sci. Math., 9, Gauthier-Villars, 1925.zbMATHGoogle Scholar
  221. [A1]
    Dieudonné, J.: Treatise on analysis, Acad. Press, 1974, Chapt. 18, Sect. 8-14 (translated from the French).zbMATHGoogle Scholar
  222. [A2]
    Cartan, E.: Leçons sur les invariants intégraux, Hermann, 1971.zbMATHGoogle Scholar
  223. [1]
    Cartan, E.: Sur la structure des groupes de transformations finis et continus, Paris, 1894.Google Scholar
  224. [2]
    Jacobson, N.: Lie algebras, Interscience, 1962.zbMATHGoogle Scholar
  225. [3]
    Chevalley, C.: Theory of Lie groups, 1, Princeton Univ. Press, 1946.zbMATHGoogle Scholar
  226. [4]
    Théorie des algèbres de Lie. Topologie des groupes de Lie, Sém. S. Lie, le année 1954–1955.Google Scholar
  227. [A1]
    Bourbaki, N.: Elements of mathematics. Lie groups and Lie algebras, Addison-Wesley, 1975 (translated from the French).Google Scholar
  228. [A2]
    Humphreys, J. E.: Introduction to Lie algebras and representation theory, Springer, 1972.CrossRefzbMATHGoogle Scholar
  229. [A3]
    Serre, J.-P.: Lie algebras and Lie groups, Benjamin, 1965 (translated from the French).zbMATHGoogle Scholar
  230. [A4]
    Jacobson, N.: Lie algebras, Dover, reprint, 1979.Google Scholar
  231. [IA]
    Chevalley, C.: Theory of Lie groups, 1, Princeton Univ. Press, 1946.zbMATHGoogle Scholar
  232. [IB]
    Chevalley, C.: Théorie des groupes de Lie, 2–3, Hermann, 1951-1955.Google Scholar
  233. [2]
    Borel, A.: Linear algebraic groups, Benjamin, 1969.Google Scholar
  234. [3]
    Borel, A. and Tits, J.: ‘Groupes réductifs’, Publ. Math. IHES 27 (1965), 55–150.MathSciNetGoogle Scholar
  235. [4]
    Demazure, M. and Grothendieck, A.: Schémas en groupes I-III, Lecture Notes in Math., 151–153, Springer, 1970.Google Scholar
  236. [A1]
    Borel, A. and Springer, T. A.: ‘Rationality properties of linear algebraic groups’, Tohoku Math. J. (2) 20 (1968), 443–497.MathSciNetCrossRefzbMATHGoogle Scholar
  237. [1]
    Cartan, E.: ‘Les tenseurs irréductibles et les groupes linéaires simples et semi-simples’, Bull. Sci. Math. 49 (1925), 130–152.Google Scholar
  238. [2]
    Jacobson, N.: Lie algebras, Interscience, 1962.zbMATHGoogle Scholar
  239. [3]
    Theôrie des algèbres de Lie. Topologie des groupes de Lie, Sém. S. Lie, le année 1954–1955, Ecole Norm. Super., 1955.Google Scholar
  240. [4]
    Zhelobenko, D. P.: Compact Lie groups and their representations, Amer. Math. Soc., 1973 (translated from the Russian).zbMATHGoogle Scholar
  241. [5]
    Dixmier, J.: Enveloping algebras, North-Holland, 1977 (translated from the French).Google Scholar
  242. [6]
    Borel, A. and Carter, E., ET AL. (EDS.): Seminar on algebraic groups and related finite groups, Lecture Notes in Math., 131, Springer, 1970.CrossRefzbMATHGoogle Scholar
  243. [A1]
    Humphreys, J. E.: Introduction to Lie algebras and representation theory, Springer, 1972CrossRefzbMATHGoogle Scholar
  244. [1]
    Cartan, H.: ‘Variétés analytiques complexes et cohomologie’, in R. Remmert and J.-P. Serre (eds.): Collected works, Springer, 1979, pp. 669–683.Google Scholar
  245. [2]
    Gunning, R. C. and Rossi, H.: Analytic functions of several complex variables, Prentice-Hall, 1965.Google Scholar
  246. [3]
    Hörmander, L.: An introduction to complex analysis in several variables, North-Holland, 1973.zbMATHGoogle Scholar
  247. [A1]
    Henkin, G. M. [G. M. Khenkin] and Leiterer, J.: Theory of functions on complex manifolds, Birkha, 1984 (translated from the Russian).zbMATHGoogle Scholar
  248. [A2]
    Grauert, H. and Remmert, R.: Theory of Stein spaces, Springer, 1977 (translated from the German).Google Scholar
  249. [A3]
    Krantz, S. G.: Function theory of several complex variables, Wiley, 1982zbMATHGoogle Scholar
  250. [A4]
    Range, R. M.: Holomorphic functions and integral representations in several complex variables, Springer, 1986, Chapt. VI, Par. 6.zbMATHGoogle Scholar
  251. [1]
    Weyl, H.: ‘Theorie der Darstellung kontinuierlicher halb- einfacher Gruppen durch lineare Transformationen I’, Math. Z. 23 (1925), 271–309.MathSciNetCrossRefGoogle Scholar
  252. [2]
    Jacobson, N.: Lie algebras, Interscience, 1962.Google Scholar
  253. [3]
    Bourbaki, N.: Elements of mathematics. Lie groups and Lie algebras, Addison-Wesley, 1975 (translated from the French).Google Scholar
  254. [A1]
    Serre, J.-P.: Algèbres de Lie semi-simples complexes, Benjamin, 1966.zbMATHGoogle Scholar
  255. [A2]
    Humphreys, J. E.: Introduction to Lie algebras and representation theory, Springer, 1972.CrossRefzbMATHGoogle Scholar
  256. [A3]
    Carter, R.: Simple groups of Lie type, Wiley, 1972.zbMATHGoogle Scholar
  257. [1]
    Carter, R. W.: ‘Nilpotent selfnormalizing subgroups of soluble groups’, Math. Z. 75, no. 2 (1961), 136–139.MathSciNetCrossRefzbMATHGoogle Scholar
  258. [2]
    Kostrikin, A. I.: ‘Finite groups’, Itogi Nauk. Algebra 1964 (1966), 7–46 (in Russian).MathSciNetGoogle Scholar
  259. [A1]
    Huppert, B.: Endliche Gruppen, 1, Springer, 1979.zbMATHGoogle Scholar
  260. [1]
    Itogi Nauk. Algebra. Topol. Geom. 1965 (1967), 227; 243.Google Scholar
  261. [A1]
    Bing, R. H.: ‘The cartesian product of a certain non-manifold and a line is E4l’, Ann. of Math. 70 (1959), 399–412.MathSciNetCrossRefzbMATHGoogle Scholar
  262. [A2]
    Daverman, R. J.: Decompositions of manifolds, Acad. Press, 1986.zbMATHGoogle Scholar
  263. [11.
    Descartes, R.: Geometria, Leiden, 1649.Google Scholar
  264. [1]
    Bucur, I. and Deleanu, A.: Introduction to the theory of categories and functors, Wiley, 1968.zbMATHGoogle Scholar
  265. [A1]
    Snyder, J. P.: Map projection—a working manual, U. S. Geol. Survey, 1393, U. S. Government Printing Office, 1987.Google Scholar
  266. [1]
    Itogi Nauk. i Tekhn. Kartografiya 1 (1976), 45–57.Google Scholar
  267. [2]
    Kavraski, V. V.: Collected works, 2, Moscow, 1958–1960 (in Russian).Google Scholar
  268. [3]
    Kagan, V. F.: Foundations of the theory of surfaces, 1–2, Moscow-Leningrad, 1947–1948 (in Russian).Google Scholar
  269. [4]
    Meshcheryakov, G. A.: Theoretical foundations of mathematical cartography, Moscow, 1968 (in Russian).Google Scholar
  270. [5]
    Euler, L.: Selected articles on cartography, Moscow, 1959 (in Russian; translated from the German).Google Scholar
  271. [6]
    Gauss, C. F.: Selected work on geodesy, 2, Moscow, 1958 (in Russian).Google Scholar
  272. [7]
    Tissot, M. A.: Mapping of one surface onto another and the composition of geographic maps, Moscow, 1899 (in Russian; translated from the French).Google Scholar
  273. [8]
    Chebyshev, P. L.: ‘Sur la construction des cartes géographiques’, in Oeuvres, Vol. 1, Chelsea, 1962, pp. 233–236; 239–247.Google Scholar
  274. [9]
    Grave, D. A.: On the fundamental problems of the mathematical theory of constructing geographical maps, Spravochn. Mat. Bibl., 1896 (in Russian).Google Scholar
  275. [10]
    Markov, A. A.: Izv. A.Ad. Nauk SSSR Ser. 5 2, no. 3 (1895), 177–187.Google Scholar
  276. [11]
    Urmaev, N. A.: Methods for finding new cartographic projections, Moscow, 1947 (in Russian).Google Scholar
  277. [12]
    Lavrent’ev, M. A.: Variational methods in boundary value problems for systems of equations of elliptic type, Moscow, 1962 (in Russian).Google Scholar
  278. [13]
    Milnor, J.: A problem in cartography’, Amer. Math. Monthly 76 (1969), 1101–1112.MathSciNetCrossRefzbMATHGoogle Scholar
  279. [14]
    Airy, G. B.: Philos. Mag. Ser. 4 22 (1861), 409–421.Google Scholar
  280. [15]
    Tsinger, N. Ya.: Izv. Akad Nauk SSSR Ser. 6 10, no. 17 (1916), 1693–1704.Google Scholar
  281. [16]
    Meshcheryakov, G. A.: ‘New extremal problems’, Soviet Math Dokl. 2 (1961), 158–161. (Dokl. Akad Nauk SSSR 136, no. 5 (1961), 1026–1029 )MathSciNetzbMATHGoogle Scholar
  282. [17]
    Topchilov, M. A.: Izv. Vuzov. Geod. i Aerofotos’emka 4 (1970), 91–96.Google Scholar
  283. [18]
    Tuchin, Ya. I.: Trudy Novosibirsk. Inst. Inzhenerov Geod., Aerofotos’emki i Kartografii 30 (1973), 65–67.Google Scholar
  284. [19]
    Yuzefovich, Yu. M.: Sb. Nauchn. Trudov Belorussk. SeVkhoz. Akad. 86 (1972), 245–253.Google Scholar
  285. [20]
    Tuchin, Ya. I.: Trudy Novosibirsk. Inst. Inzhenerov Geod. Aerofotos’emki i Kartografii 34 (1973), 55–64.Google Scholar
  286. [A1]
    Robinson, A. H.: Elements of cartography, Wiley, 1960.Google Scholar
  287. [1]
    Laplace, P. S.: Oeuvres complètes, Vol. 9, Paris, 1893, pp. 5–68.Google Scholar
  288. [2]
    Darboux, G.: Leçons sur la theorie générale des surfaces et ses applications géométriques du calcul infinitesimal, 1, Gauthier- Villars, 1887.Google Scholar
  289. [3]
    Tricomi, F. G.: Lectures on partial differential equations, Moscow, 1957 (in Russian; translated from the Italian).Google Scholar
  290. [4]
    Babich, V. M., ET AL.: Linear equations of mathematical physics, Moscow, 1964 (in Russian).zbMATHGoogle Scholar
  291. [5]
    Dombrovskit, G. A.: The method of adiabatic approximation in the theory of plane gas flows, Moscow, 1964 (in Russian).Google Scholar
  292. [6]
    Chekmarev, T. V.: ‘Generalized model systems of mixed-type equations’, Izv. Vuzov. Mat. 11 (1972), 72–79 (in Russian).Google Scholar
  293. [7]
    Pashkovski, V. I.: ‘Related operators and boundary-value problems for elliptic equations’, Differential Eq. 12, no$11 (1977), 81–88. (DifferentsiaVnye Uravneniya 12 (1976), 118–128 )Google Scholar
  294. [1]
    Casimir, H. and Waerden, B. L. Van Der: ‘Algebraischer Beweis der Vollständigen Reduzibilität der Darstellungen halbeinfacher Liescher Gruppen’, Math. Ann. 111 (1935), 1–2.MathSciNetCrossRefGoogle Scholar
  295. [2]
    Bourbaki, N.: Elements of mathematics. Lie groups and Lie algebras, Addison-Wesley, 1975 (translated from the French).Google Scholar
  296. [3]
    Serre, J.-P.: Lie algebras and Lie groups, Benjamin, 1965 (translated from the French).zbMATHGoogle Scholar
  297. [4]
    Jacobson, N.: Lie algebras, Interscience, 1962.zbMATHGoogle Scholar
  298. [5]
    Naimark, M. A.: Theory of group representations, Springer, 1982 (translated from the Russian).CrossRefzbMATHGoogle Scholar
  299. [6]
    Dixmier, J.: Enveloping algebras, North-Holland, 1977 (translated from the French).Google Scholar
  300. [A1]
    Humpreys, J. E.: Introduction to Lie algebras and representation theory, Springer, 1972.CrossRefGoogle Scholar
  301. [1]
    Savelov, A. A.: Plane curves, Moscow, 1960 (in Russian).Google Scholar
  302. [A1]
    Lawrence, J. D.: A catalog of special plane curves, Dover, reprint, 1972.zbMATHGoogle Scholar
  303. [A2]
    Bruce, J. W. and Giblin, P. J.: Curves and singularities: a geometrical introduction to singularity theory, Cambridge Univ. Press, 1984.Google Scholar
  304. [1]
    Catalan, E.: Mémoire sur les surfaces gauches à plan directeur, Paris’ 1843’Google Scholar
  305. [A1]
    Klingenberg, W.: A course in differential geometry, Springer, 1978 (translated from the German).zbMATHGoogle Scholar
  306. [A2]
    Millman, R. S. and Parker, G. D.: Elements of differential geometry, Prentice-Hall, 1977.zbMATHGoogle Scholar
  307. [1]
    Shoenfield, J. R.: Mathematical logic, Addison-Wesley, 1967.zbMATHGoogle Scholar
  308. [1]
    Sacks, G. E.: Saturated model theory, Benjamin, 1972.zbMATHGoogle Scholar
  309. [2]
    Palyutin, E. A.: ‘Description of categorical quasivarieties’, Algebra and Logic 14 (1976), 86–111. (Algebra i Logika 14 (1975), 145–185 )CrossRefGoogle Scholar
  310. [3]
    Shelah, S.: ‘Categoricity of uncountable theories’, in Proc. Tarski Symp., Proc. S.Mp. Pure. Math., Vol. 25, 1974, pp. 187–203.Google Scholar
  311. [A1]
    Los, J.: ‘On the categoricity in power of elementary deductive systems and some related problems’, Colloq. Math. 3 (1954), 58–62.MathSciNetzbMATHGoogle Scholar
  312. [A2]
    Morely, M.: ‘Categoricity in power’, Trans. Amer. Math. Soc. 114 (1965), 514–538.MathSciNetCrossRefGoogle Scholar
  313. [A3]
    Chang, C. C. and Keisler, H. J.: Model theory, North- Holland, 1973.zbMATHGoogle Scholar
  314. [A4]
    Shelah, S.: Classification theory and the number of non- isomorphic models, North-Holland, 1978.zbMATHGoogle Scholar
  315. [1]
    Bucur, I. and Deleanu, A.: Introduction to the theory of categories and functors, Wiley, 1968.zbMATHGoogle Scholar
  316. [2]
    Grothendieck, A.: ‘Sur quelques points d’algèbre homologique’, Tohoku Math. J. 9 (1957), 119–221.MathSciNetzbMATHGoogle Scholar
  317. [3]
    Kurosh, A. G., Livshits, A. KH. and Shul’gefer, E. G.: ‘Foundations of category theory’, Uspekhi Mat. Nauk 15, no. 6 (1960), 3–52 (in Russian).Google Scholar
  318. [4]
    Itogi Nauk. Algebra. Topol. 1962 (1963), 90–106.Google Scholar
  319. [5]
    Itogi Nauk. Algebra, Topol Geom. 1967 (1969), 9–57.Google Scholar
  320. [6]
    Tsalenko, M. SH. and Shul’gefer, E.G.: Fundamentals of category theory, Moscow, 1974 (in Russian).Google Scholar
  321. [7]
    Bunge, M. C.: ‘Relative functor categories and categories of algebras’, J. of Algebra 11 (1969), 64–101.MathSciNetCrossRefzbMATHGoogle Scholar
  322. [8]
    Eilenberg, S. and Maclane, S.: Trans. Amer. Math. Soc. 58 (1945), 231–294.MathSciNetzbMATHGoogle Scholar
  323. [9]
    Freyd, P.: Abelian categories, Harper amp; Row, 1964.zbMATHGoogle Scholar
  324. [10]
    Freyd, P.: On the concreteness of certain categories, Symp. Math., 4, Acad. Press, 1970, pp. 431–456.MathSciNetGoogle Scholar
  325. [11]
    Maclane, S.: Categories for the working mathematician, Springer, 1971.Google Scholar
  326. [12]
    Schubert, H.: Categories, 1–2, Springer, 1972.CrossRefzbMATHGoogle Scholar
  327. [13]
    Mitchell, B.: Theory of categories, Acad. Press, 1965.zbMATHGoogle Scholar
  328. [A1]
    Eilenberg, S. and MacLane, S.: ‘Natural isomorphisms in group theory’, Proc. Nat Sci. USA 28 (1942), 537–543.MathSciNetCrossRefzbMATHGoogle Scholar
  329. [A2]
    Bénabou, J.: ‘Fibred categories and the foundations of naive category theory’, J. Symbolic Logic 50 (1985), 10–37.MathSciNetCrossRefzbMATHGoogle Scholar
  330. [A3]
    Brümmer, G. C. L.: Topological categories’, Topology Appl. 18 (1984), 27–41.MathSciNetCrossRefzbMATHGoogle Scholar
  331. [A4]
    MacLane, S.: ‘Duality for groups’, Bull. Amer. Math. Soc. 56 (1950), 485–516.MathSciNetCrossRefGoogle Scholar
  332. [A5]
    Kan, D. M.: ‘Adjoint functors’, Trans. Amer. Math. Soc. 87 (1958), 294–329.MathSciNetCrossRefzbMATHGoogle Scholar
  333. [A6]
    Manes, E. G.: Algebraic theories, Springer, 1976.CrossRefzbMATHGoogle Scholar
  334. [A7]
    Eilenberg, S. and Moore, J. C.: ‘Adjoint functors and triples’, III. J. Math. 9 (1965), 381–398.MathSciNetzbMATHGoogle Scholar
  335. [A8]
    Linton, F. E. J.: ‘Some aspects of equational categories’, in Proc Conf. on Categorical Algebra, La Jolla 1965, Springer, 1966, pp. 84–94.MathSciNetGoogle Scholar
  336. [A9]
    Lawvere, F. W.: ‘Functorial semantics of algebraic theories’, Proc. Nat. Acad. Sci. USA 50 (1963), 869–872.MathSciNetCrossRefzbMATHGoogle Scholar
  337. [A10]
    Pareigis, B.: Categories and functors, Acad. Press, 1970.zbMATHGoogle Scholar
  338. [A11]
    Mitchell, B.: The full imbedding theorem’, Amer. J. Math. 86 (1964), 619–637.MathSciNetCrossRefzbMATHGoogle Scholar
  339. [A12]
    Kelly, G. M.: Basic concepts of enriched category theory, Cambridge Univ. Press, 1982.zbMATHGoogle Scholar
  340. [A13]
    Eilenberg, S. and Kelly, G. M.: ‘Closed categories’, in Proc. Conf. on Categorical Algebra, La Jolla 1965, Springer, 1966, pp. 421–562.MathSciNetGoogle Scholar
  341. [A14]
    Lawvere, F. W.: ‘The category of categories as a foundation for mathematics’, in Proc. Conf. on Categorical Algebra, La Jolla 1965, Springer, 1966, pp. 1–20.Google Scholar
  342. [A15]
    Johnstone, P. T.: Topos theory, Acad. Press, 1977.zbMATHGoogle Scholar
  343. [A16]
    Lambek, J. and Scott, P. J.: Introduction to higher order categorical logic, Cambridge Univ. Press, 1986.zbMATHGoogle Scholar
  344. [A17]
    Bénabou, J.: ‘Introduction to bicategories’, in Reports of the Midwest Category Seminar I, Lectures Notes in Math., Vol. 47, Springer, 1967, pp. 1–77.CrossRefGoogle Scholar
  345. [A18]
    Brown, R. and Higgins, P. J.: The equivalence of ∞- groupoids and crossed complexes’, Cahiers Top. et Geom. Diff. 22 (1981), 371–386.MathSciNetzbMATHGoogle Scholar
  346. [A19]
    MacLane, S.: ‘Why commutative diagrams coincide with equivalent proofs’, in Algebraists’ Homage, Contemp. Math., Vol. 13, Amer. Math. Soc., 1982, pp. 387–401.MathSciNetGoogle Scholar
  347. [1]
    Lusternik, L. [L. A. Lyusternik]: ‘Sur quelques méthodes topologique dans la géométrie différentielle’, in Atti del Congresso Internazionale dei Matematici 1928 (Bologna), Vol. 4, Zanicheli, 1931, pp. 291–296.Google Scholar
  348. [2]
    Lyusternik, L. A. and Shnirel’man, L. G.: Topological methods in variational problems and their application to the differential geometry of surfaces’, Uspekhi Mat. Nauk 2, no. 1 (1947), 166–217 (in Russian).Google Scholar
  349. [A1]
    Lusternik, L. [L. A. Lyusternik] and Schnirelman, L. [L. G. Shnirel’man]: Méthodes topologiques dans les problèmes variationels, Hermann, 1934.Google Scholar
  350. [A2]
    Klingenberg, W.: Lectures on closed geodesies, Springer, 1978.CrossRefGoogle Scholar
  351. [A3]
    Seifert, H. and Threlfall, W.: Variationsrechnung im Grossen, Chelsea, reprint, 1948, pp. 91–92.Google Scholar
  352. [1]
    Baire, R.: Leçons sur les fonctions discontinues, professées au collège de France, Gauthier-Villars, 1905.Google Scholar
  353. [2]
    Oxtoby, J. C.: Measure and category, Springer, 1971zbMATHGoogle Scholar
  354. [A1]
    Royden, H. L.: Real analysis, MacMillan, 1968.Google Scholar
  355. [A2]
    Rooy, A. C. M. Van and Schikhof, W. H.: A second course on real functions, Cambridge Univ. Press, 1982.Google Scholar
  356. [1]
    Kurosh, A. G., Livshits, A. KH. and Shul’gefer, E. G.:‘Foundations of the theory of categories’, Russian Math. Surveys$115, no$16 (1960), 1–46. (Uspekhi Mat. Nauk 15, no. 6 (1960), 3–52 )MathSciNetCrossRefzbMATHGoogle Scholar
  357. [2A]
    Eckmann, B. and Hilton, P. J.: ‘Group-like structures in general categories I. Multiplications and comultiplications’, Math. Ann. 145, no. 3 (1963), 227–255.MathSciNetCrossRefGoogle Scholar
  358. [2B]
    Eckmann, B. and Hilton, P. J.: ‘Group-like structures in general categories II. Equalizers, limits, lengths’, Math. Ann. 151, no. 2 (1963), 150–186.MathSciNetCrossRefGoogle Scholar
  359. [2C]
    Eckmann, B. and Hilton, P. J.: ‘Group-like structures in general categories III. Primitive categories’, Math. Ann. 150, no. 2 (1963), 165–187.MathSciNetCrossRefGoogle Scholar
  360. [3]
    Leroux, P.: ‘Une charactérisation de la catégorie des groupes’, Canad. Math. Bull. 15, no. 3 (1972), 375–380.MathSciNetCrossRefzbMATHGoogle Scholar
  361. [1]
    Brinkmann, H. B. and Puppe, D.: Abelsche und exakte Kategorien, Springer, 1969.zbMATHGoogle Scholar
  362. [2]
    Kawahara, J.: ‘Relations in categories with pullbacks’, Mem. Fac. Sci. Kyushu Univ. Ser. A. Math. 27, no. 1 (1973), 149–173.MathSciNetCrossRefzbMATHGoogle Scholar
  363. [3]
    Kawahara, J.: ‘Matrix calculus in I-categories and an axiomatic characterization of relations in a regular category’, Mem. Fac. Sci. Kyushu Univ. Ser. A. Math. 27, no. 2 (1973), 249–273.MathSciNetCrossRefzbMATHGoogle Scholar
  364. [4]
    Tsalenko, M. SH.: ‘Correspondence categories over regular categories’, Soviet Math. Doklady 14 (1973), 1026–1029. (Dokl. Akad Nauk SSSR 211, no. 2 (1973), 297–299 )Google Scholar
  365. [1]
    Savelov, A. A.: Plane curves, Moscow, 1960 (in Russian).Google Scholar
  366. [A1]
    Lawrence, J. D.: A catalog of special plane curves, Dover, reprint, 1972.zbMATHGoogle Scholar
  367. [A1]
    Hsiung, C. C.: A first course in differential geometry, Wiley (Interscience), 1981.zbMATHGoogle Scholar
  368. [1]
    Wladimirow, W. S. [V. S. Vladimirov]: Gleichungen der mathematischen Physik, Deutsch. Verlag Wissenschaft., 1973 (translated from the Russian).Google Scholar
  369. [2]
    Godunov, S. K.: The equations of mathematical physics, Moscow, 1971 (in Russian).Google Scholar
  370. [3]
    Tricomi, F.: Equazioni a derivate parziali, Cremonese, 1957.zbMATHGoogle Scholar
  371. [4]
    Bers, L., John, F. and Schechter, M.: Partial differential equations, Interscience, 1964.zbMATHGoogle Scholar
  372. [5]
    Bitsadze, A. V. and Kalinichenko, D. F.: A collection of problems on the equations of mathematical physics, Moscow, 1977 (in Russian).Google Scholar
  373. [6]
    Bitsadze, A. V.: ‘Linear partial differential equations of mixed type’, in Proc. Third All-Union Math. Congress, Vol. 3, Moscow, 1958 (in Russian).Google Scholar
  374. [A1]
    Hörmander, L.: The analysis of linear partial differential operators, 2, Springer, 1983.Google Scholar
  375. [A2]
    Bitsadze, A. V.: Equations of mixed type, Pergamon, 1964 (translated from the Russian).zbMATHGoogle Scholar
  376. [A3]
    Courant, R. and Hilbert, D.: Methods of mathematical physics. Partial differential equations, 2, Interscience, 1965 (translated from the German).Google Scholar
  377. [1]
    Cauchy, A. L.: Analyse algébrique, Paris, 1821.Google Scholar
  378. [2]
    Stolz, O.: Math. Ann. 24 (1884), 154–171.MathSciNetCrossRefGoogle Scholar
  379. [3]
    Dieudonné, J. A.: Foundations of modern analysis, Acad. Press, 1961.Google Scholar
  380. [4]
    Il’in, V. A. and Poznyak, E. G.: Fundamentals of mathematical analysis, 1–2, Mir, 1971–1973 (translated from the Russian).Google Scholar
  381. [5]
    Kudryavtsev, L. D.: A course of mathematical analysis, 1–2, Moscow, 1981 (in Russian).Google Scholar
  382. [6]
    Nikol’ski, S. M.: A course of mathematical analysis, 1–2, Mir, 1977 (translated from the Russian).Google Scholar
  383. [7]
    Whtitaker, E. T. and Watson, G. N.: A course of modern analysis, Cambridge Univ. Press, 1952.Google Scholar
  384. [A1]
    Rudin, W.: Principles of mathematical analysis, McGraw-Hill, 1953.zbMATHGoogle Scholar
  385. [1]
    Cauchy, A. L.: Analyse algébrique, Gauthier-Villars, 1821, pp. 132–135. German translation: Springer, 1885.Google Scholar
  386. [2]
    Maclaurin, C.: Treatise of fluxions, 1, Edinburgh, 1742, pp. 289–290.Google Scholar
  387. [3]
    Cauchy, A. L.: ‘Sur la convergence des séries’, in Oeuvres complètes Sér. 2, Vol. 7, Gauthier-Villars, 1889, pp. 267–279.Google Scholar
  388. [4]
    Nikol’ski, S. M.: A course of mathematical analysis, 1, Mir, 1977 (translated from the Russian).Google Scholar
  389. [A1]
    Knopp, K.: Theorie und Anwendung der unendlichen Reihen, Springer, 1964. English translation: Blackie, 1951.zbMATHGoogle Scholar
  390. [A2]
    Hardy, G. H.: A course of pure mathematics, Cambridge Univ. Press, 1975.Google Scholar
  391. [1]
    Feller, W.: An introduction to probability theory and its applications, 2, Wiley, 1966.zbMATHGoogle Scholar
  392. [1]
    Bourbaki, N.: Elements of mathematics. General topology, Addison-Wesley, 1966, Chapt. II: Uniform structures (translation from the French).Google Scholar
  393. [A1]
    Dugundji, J.: Topology, Allyn amp; Bacon, 1978.Google Scholar
  394. [1]
    Cauchy, A. L.: Analyse algébrique, Leipzig, 1894.Google Scholar
  395. [2]
    Hadamard, J.: ‘Essai sur l’etude des fonctions données par leur développement de Taylor’, J. Math. Pures Appl. 8, no. 4 (1892), 101–186. Thesis.Google Scholar
  396. [3]
    Markushevich, A. I.: Theory of functions of a complex variable, 1, Chelsea, 1977 (translated from the Russian).zbMATHGoogle Scholar
  397. [4]
    Shabat, B. V.: Introduction to complex analysis, 1–2, Moscow, 1976 (in Russian).Google Scholar
  398. [A1]
    Hörmander, L.: An introduction to complex analysis in several variables, North-Holland, 1973.zbMATHGoogle Scholar
  399. [1]
    Cauchy, A. L.: Résumé des leçons données à l’Ecole Royale Polytechnique sur le calcul infinitésimal, 1, Paris, 1823.Google Scholar
  400. [1]
    Cauchy, A. L.: Sur la mécanique céleste et sur un nouveau calcul appelé calcul des limites, Turin, 1831.Google Scholar
  401. [2]
    Shabat, B. V.: Introduction to complex analysis, 1–2, Moscow, 1976 (in Russian).Google Scholar
  402. [3]
    Markushevich, A. I.: Theory of functions of a complex variable, 1–3, Chelsea, 1977 (translated from the Russian).zbMATHGoogle Scholar
  403. [4]
    Muskhelishvili, N. I.: Singular integral equations, Wolters– Noordhoff, 1972 (translated from the Russian).Google Scholar
  404. [5]
    Vladimirov, V. S.: Methods of the theory of functions of several complex variables, M.I.T, 1966 (translated from the Russian).Google Scholar
  405. [6]
    Privalov, I. I.: The Cauchy integral, Saratov, 1918 (in Russian).Google Scholar
  406. [7]
    Priwalow, I. I. [I. I. Privalov]: Randeigenschaften analytischer Funktionen, Deutsch. Verlag Wissenschaft., 1956 (translated from the Russian).Google Scholar
  407. [8]
    Khavinson, S. Ya.: Itogi Nauk. Mat. Anal. 1963 (1965), 5–80.Google Scholar
  408. [9]
    Khvedelidze, B. V.: ‘The method of Cauchy type integrals in discontinuous boundary value problems of the theory of holomorphic functions of a complex variable’, in Contemporary problems in mathematics, V.L. 7, Moscow, 1975, pp. 5–162 (in Russian).Google Scholar
  409. [10]
    Calderón, A. P.: ‘Cauchy integrals on Lipschitz curves and related operators’, Proc. Nat. Acad Sci. USA 74, no. 4 (1977), 1324–1327.CrossRefzbMATHGoogle Scholar
  410. [A1]
    Aleksandrov, A. B.: ‘Essays on non locally convex Hardy classes’, in V. P. Havin [V. P. Khavin] and N. K. Nikol’skit (eds.): Complex analysis and spectral theory, Springer, 1981, pp. 1–89.CrossRefGoogle Scholar
  411. [A2]
    Christ, M. and Journé, J. L.: Estimates for multilinear singular integral operators with polynomial growth, 1986. Preprint Dept. of Math. Princeton Univ..Google Scholar
  412. [A3]
    Coifman, R. R. and Meyer, Y.: ‘Non linear harmonic analysis, operator theory and P.D.E.’, in E.M. Stein (ed.): Beijing lectures in harmonic analysis, Princeton Univ. Press, 1986, pp. 3–46.Google Scholar
  413. [A4]
    Journé, J. L.: Calderón-Zygmund operators, pseudodif- ferential operators and the Cauchy integral of Calderón, Springer, 1983.Google Scholar
  414. [1]
    Cauchy, A. L.: Oeuvres complètes, Ser. 1, 4, Paris, 1890.Google Scholar
  415. [2]
    Goursat, E.: ‘Démonstration du théorème de Cauchy’, Acta Math. 4 (1884), 197–200.MathSciNetCrossRefzbMATHGoogle Scholar
  416. [3]
    Markushevich, A. I.: Theory of functions of a complex variable, 1–3, Chelsea, 1977 (translated from the Russian).zbMATHGoogle Scholar
  417. [4]
    Vladimirov, V. S.: Methods of the theory of functions of several complex variables, M.I.T, 1966 (translated from the Russian).Google Scholar
  418. [5]
    Shabat, B. V.: Introduction to complex analysis, 1–2, Moscow, 1976 (in Russian).Google Scholar
  419. [A1]
    Goursat, E.: ‘Sur la définition générale des fonctions analytiques, d’après Cauchy’, Trans. Amer. Math. Soc. 1 (1900), 14–16.MathSciNetzbMATHGoogle Scholar
  420. [A1]
    Markushevich, A. I.: Theory of functions of a complex variable, 1–3, Chelsea, 1977 (translated from the Russian).zbMATHGoogle Scholar
  421. [A2]
    Titchmarsh, E. C.: Introduction to the theory of Fourier integrals, Oxford Univ. Press, 1948.Google Scholar
  422. [A3]
    Rudin, W.: Real and complex analysis, McGraw-Hill, 1974.zbMATHGoogle Scholar
  423. [1]
    Bers, L., John, F. and Schechter, M: Partial differential equations, Interscience, 1964.zbMATHGoogle Scholar
  424. [2]
    Bitsadze, A. V.: The equations of mathematical physics, Moscow, 1976 (in Russian).Google Scholar
  425. [3]
    Wladimirow, W. S. [V. S. Vladimirov]: Gleichungen der mathematischen Physics, Deutsch. Verlag Wissenschaft., 1973 (translated from the Russian).Google Scholar
  426. [4]
    Courant, R. and Hilbert, D.: Methods of mathematical physics. Partial differential equations, 2, Interscience, 1965 (translated from the German).Google Scholar
  427. [5]
    Hörmander, L.: Linear partial differential operators, Springer, l963.Google Scholar
  428. A1] Chazarain, J. and Piriou, A.: Introduction to the theory of linear partial differential equations, North-Holland, 1982 (translated from the French).Google Scholar
  429. [A2]
    Hörmander, L.: The analysis of linear partial differential operators, 1, Springer, 1983.Google Scholar
  430. [A1]
    Hartman, P.: Ordinary differential equations, Birkhàuser, 1982.zbMATHGoogle Scholar
  431. [A2]
    Hille, E.: Ordinary differential equations in the complex domain, Wiley (Interscience), 1976.zbMATHGoogle Scholar
  432. [A3]
    Hirsch, M. W. and Smale, S.: Differential equations, dynamical systems and linear algebra, Acad. Press, 1974.zbMATHGoogle Scholar
  433. [1]
    Kovalevskaya, S.: Scientific works, Moscow, 1948 (in Russian).Google Scholar
  434. [2]
    Hadamard, J.: Lectures on Cauchy’s problem in linear partial differential equations, Dover, reprint, 1952 (translated from the French).zbMATHGoogle Scholar
  435. [3]
    Bers, L., John, F. and Schechter, M.: Partial differential equations, Interscience, 1964.zbMATHGoogle Scholar
  436. [4]
    Bitsadze, A. V.: The equations of mathematical physics, Moscow, 1976 (in Russian).Google Scholar
  437. [5]
    Courant, R. and Hilbert, D.: Methods of mathematical physics. Partial differential equations, 2, Interscience, 1965 (translated from the German).Google Scholar
  438. [6]
    Mizohata, S.: The theory of partial differential equations, Cambridge Univ. Press, 1973 (translated from the Japanese).zbMATHGoogle Scholar
  439. [7]
    Tichonoff, A. N. [A. N. Tikhonov] and Samarski, A. A.: Dif ferentialgleichungen der mathematischen Physik, Deutsch. Verlag Wissenschaft., 1959 (translated from the Russian).Google Scholar
  440. [8]
    Hörmander, L.: Linear partial differential operators, Springer, 1964Google Scholar
  441. [A1]
    Garabedian, P. R.: Partial differential equations, Wiley, 1964.zbMATHGoogle Scholar
  442. [A2]
    Hörmander, L.: The analysis of linear partial differential operators, 1–2, Springer, 1985.Google Scholar
  443. [A3]
    Treves, F.: Basic partial differential equations, Acad. Press, 1975.zbMATHGoogle Scholar
  444. [1]
    Berezin, I. S. and Zhidkov, N. P.: Computing methods, Pergamon, 1973 (translated from the Russian).Google Scholar
  445. [2]
    Bakhvalov, N. S.: Numerical methods: analysis, algebra, ordinary differential equations, Mir, 1977 (translated from the Russian).Google Scholar
  446. [3]
    Hall, G. and Watt, J. M.: Modern numerical methods for ordinary differential equations, Clarendon Press, 1976.zbMATHGoogle Scholar
  447. [A1]
    Butcher, J. C.: The numerical analysis of ordinary differential equations, Runge-Kutta and general linear methods, Wiley, 1987.zbMATHGoogle Scholar
  448. [A2]
    Curtiss, C. F. and Hirschfelder, J. O.: ‘Integration of stiff equations’, Proc. Nat Acad. Sci. USA 38 (1952), 235–243.MathSciNetCrossRefzbMATHGoogle Scholar
  449. [A3]
    Dekker, K. and Verwer, J. G.: Stability of Runge-Kutta methods for stiff nonlinear differential equations, North- Holland, 1984.zbMATHGoogle Scholar
  450. [A4]
    Dormand, J. R. and Prince, P. J.: ‘A family of embedded Runge-Kutta formulae’, J. Comp. Appl. Math. 6 (19–26).Google Scholar
  451. [A5]
    Euler, L.: ‘Institutionum calculi integralis. Volumen Secundum (1769)’, in Opera Ommia Ser. 1, Vol. 12, 1914.Google Scholar
  452. [A6]
    Cear, C. W.: Numerical initial value problems in ordinary differential equations, Prentice Hall, 1973.Google Scholar
  453. [A7]
    Hairer, E. Nørsett, S. P. and Wanner, G.: Solving ordinary differential equations, 1. Nonstiff problems, Springer, 1987.zbMATHGoogle Scholar
  454. [A8]
    Henrici, P.: Discrete variable methods in ordinary differential equations, Wiley, 1962.zbMATHGoogle Scholar
  455. [A9]
    Lagrange, J. L.: ‘Solutions des problèmes en calcule’, in Oeuvres, Vol. 1, pp. 471–668.Google Scholar
  456. [A10]
    Lambert, J. D.: Computational methods in ordinary differential equations, Wiley, 1973.zbMATHGoogle Scholar
  457. [A11]
    Merson, R. H.: ‘An operational method for the study of integration processes’, in Proc. Symp. Data Processing, Weapons Res. Establishment, Salisbury, 1957, pp. 110–125.Google Scholar
  458. [A12]
    Milne, W. E.: ‘Numerical integration of ordinary differential equations’, Amer. Math. Monthly 33 (1926), 455–460.MathSciNetCrossRefzbMATHGoogle Scholar
  459. [A13]
    Moulton, F. R.: New methods in exterior ballistics, Univ. Chicago Press, 1926.zbMATHGoogle Scholar
  460. [A14]
    Nordsieck, A.: ‘On numerical integration of ordinary differential equations’, Math. Comp. 16 (1962), 22–49.MathSciNetCrossRefzbMATHGoogle Scholar
  461. [A15]
    Obrechkoff, N. [N. Obreshkov]: ‘Neue Kwadraturformuln’, Abh. Preuss. Akad. Wissenschaft. Math. Nat. Kl. 4 (1940).Google Scholar
  462. [A16]
    Stetter, H. J.: Analysis of discretization methods for ordinary differential equations, Springer, 1973.zbMATHGoogle Scholar
  463. [A17]
    Fourier, J. B. J.. Théorie analytique de la chaleur, Paris, 1822.Google Scholar
  464. [A18]
    Rothe, E.: ‘Two-dimensional parabolic boundary-value problems as special case of one-dimensional boundary-value problems’, Math. Ann. 102 (1930), 650–670.MathSciNetCrossRefzbMATHGoogle Scholar
  465. [1]
    D’alembert, J.: Essai d’une nouvelle théorie de la résistance des fluides, Paris, 1752.Google Scholar
  466. [2]
    Euler, L.: Nova Acta Acad. Sci. Petrop. 10 (1797), 3–19.Google Scholar
  467. [3]
    Cauchy, A. L.: ‘Mémoire sur les intégrales définies’, in Oeuvres complètes Ser. 1, Vol. 1, Paris, 1882, pp. 319–506.Google Scholar
  468. [4]
    Weber, H. (ED.): ‘Grundlagen für eine allgemeine Theorie der Funktionen einer veränderlichen komplexen Grösse’, in Riemann’s gesammelte mathematische Werke, Dover, reprint, 1953, pp. 3–48.Google Scholar
  469. [5]
    Markushevich, A. I.: Theory of functions of a complex variable, 1, Chelsea, Chapt. 1 (translated from the Russian).Google Scholar
  470. [6]
    Shabat, B. V.: Introduction to complex analysis, Moscow, 1976, 1, Chapt. 1; 2, Chapt. 1 (in Russian).Google Scholar
  471. [A1]
    Ahlfors, L. V.: Complex analysis, McGraw-Hill, 1979, pp. 24–26.zbMATHGoogle Scholar
  472. [1]
    Cauchy, A. L.: J. Ecole Polytechnique 9 (1813), 87–98.Google Scholar
  473. [2]
    Aleksandrov, A. D.: Konvexe Polyeder, Akademie-Verlag, 1958 (translated from the Russian).Google Scholar
  474. [3]
    Hadamard, J.: Géométrie élémentaire, 2, 1958.Google Scholar
  475. [4]
    Pogorelov, A. V.: ‘Unique definition of convex surfaces’, Trudy Mat. Inst. Steklov. 29 (1949) (in Russian).Google Scholar
  476. [1]
    Il’in, V. A. and Poznyak, E. G.: Fundamentals of mathematical analysis, 1–2, Mir, 1982 (translated from the Russian).Google Scholar
  477. [2]
    Kudryavtsev, L. D.: Mathematical analysis, 1, Moscow, 1973 (in Russian).Google Scholar
  478. [3]
    Nikol’ski, S. M.: A course of mathematical analysis, 1–2, Mir, 1977 (translated from the Russian).Google Scholar
  479. [A1]
    Rudin, W.: Principles of mathematical analysis, McGraw-Hill, 1976, pp. 107–108.zbMATHGoogle Scholar
  480. [1]
    Cauchy, A. L.: Exercise d’analyse et de physique mathématique, 3, Paris, 1844, pp. 151–252.Google Scholar
  481. [2]
    Kurosh, A. G.: The theory of groups, 1–2, Chelsea, 1955–1956 (translated from the Russian).Google Scholar
  482. [A1]
    Suzuki, M.: Group theory, 1, Springer, 1982.Google Scholar
  483. [1]
    Savelov, A. A.: Plane curves, Moscow, 1960 (in Russian).Google Scholar
  484. [A1]
    Salmon, G.: Higher plane curves, Hodges, Foster and Figgis, 1879.Google Scholar
  485. [A2]
    Chazarain, J.: ‘Solutions asymptotiques et caustiques’, in F. Pham (éd.): Rencontre de Congrès sur les singularités et leurs applications, Univ. Nice, 1975, pp. 43–78.Google Scholar
  486. [A3]
    Duistermaat, J. J.: ‘Oscillatory integrals, Lagrange immersions, and unfolding of singularities’, Comm. PureAppl. Math. 27 (1974), 207–281.MathSciNetCrossRefzbMATHGoogle Scholar
  487. [A4]
    Poston, T. and Stewart, I.: Catastrophe theory and its applications, Pitman, 1978, Chapt. 12.Google Scholar
  488. [A5]
    Bruce, J. W. and Giblin, P. J.: Curves and singularities: a geometrical introduction to singularity theory, Cambridge Univ. Press, 1984.zbMATHGoogle Scholar
  489. [1]
    Cayley, A.: ‘Sur la condition pour qu’une famille de surfaces données puisse faire partie d’un système orthogonal’, C.R. A.Ad Sci. Paris 75 (1872), 324–330; 381–385. Also: Collected mathematical papers, Vol. 8 (1891), pp. 269–291.Google Scholar
  490. [2]
    Darboux, G.: Leçons sur les systèmes orthogonaux et les coordonnées curvilignes, Paris, 1898.Google Scholar
  491. [3]
    Kagan, V. F.: Fundamentals of the theory of surfaces in a tensor setting, 2, Moscow-Leningrad, 1948 (in Russian).Google Scholar
  492. [1]
    Dickson, L. E.: Linear algebras, Cambridge Univ. Press, 1930.Google Scholar
  493. [2]
    Schafer, R. D.: An introduction to nonassociative algebras, Acad. Press, 1966.zbMATHGoogle Scholar
  494. [3]
    Zhevlakov, K. A., Slin’ko, A. M., Shestakov, I. P. and Shirshov, A. I.: Rings that are close to associative ones, Moscow, 1978 (in Russian).Google Scholar
  495. [1]
    Shafarevich, I. R.: Basic algebraic geometry, Springer, 1977 (translated from the Russian).zbMATHGoogle Scholar
  496. [2]
    Hodge, W. V. D. and Pedoe, D.: Methods of algebraic geometry, 2, Cambridge Univ. Press, 1952.zbMATHGoogle Scholar
  497. [3]
    Samuel, P.: Méthodes d’algèbre abstraite en géométrie algébrique, Springer, 1955.Google Scholar
  498. [4]
    Chow, W.-L. and Waerden, B. L. Van Der: ‘Zur algebraische Geometrie IX’, Math. Ann. 113 (1937), 692–704.MathSciNetCrossRefzbMATHGoogle Scholar
  499. [5]
    Cayley, A.: ‘On a new analytical representation of curves in space’, in Collected mathematical papers, Vol. 4, Cambridge Univ. Press, 1891, pp. 446–455. Quart. J. Pure Appl. Math. 3 (1860), 225–236.Google Scholar
  500. [1]
    Klein, F. and Sommerfeld, A.: Ueber die Theorie des Kreises, 1–2, Teubner, 1965.Google Scholar
  501. [2]
    Goldstein, H.: Classical mechanics, Addison-Wesley, 1953.Google Scholar
  502. [3]
    Synge, J. L.: Classical dynamics, 3/1, Springer, 1960, pp. 1–225.Google Scholar
  503. [A1]
    Val, P. Du: Homographies, quaternions and rotations, Clarendon Press, 1964.zbMATHGoogle Scholar
  504. [1]
    Kurosh, A. G.: Lectures on general algebra, Chelsea, 1963 (translated from the Russian).Google Scholar
  505. [1]
    Cayley, A.: ‘A fourth memoir on quantics’, in Collected mathematical papers, Vol. 2, Cambridge Univ. Press, 1889, pp. 513–526. Philos. Trans. Royal Soc. London 148 (1858), 415–427.Google Scholar
  506. [2]
    Shulikovski, V. I.: Classical differential geometry in a tensor setting, Moscow, 1963 (in Russian).Google Scholar
  507. [1]
    Grossman, I. and Magnus, W.: Groups and their graphs, Random House, 1964.zbMATHGoogle Scholar
  508. [2]
    Clifford, A. H. and Preston, G. B.: The algebraic theory of semigroups, 1, Amer. Math. Soc., 1961.Google Scholar
  509. [1]
    Akhiezer, N. I. and Glazman, I. M.: Theory of linear operators in Hilbert space, 1–2, Pitman, 1980 (translated from the Russian).Google Scholar
  510. [2]
    Szökefalvi-Nagy, B. and Foias, C.: Harmonic analysis of operators on Hilbert space, North-Holland, 1970.Google Scholar
  511. [1]
    Aleksandrov, P. S.: Math. Ann. 96 (1927), 489–511.MathSciNetCrossRefGoogle Scholar
  512. [2]
    Aleksandrov, P. S.: C.R. Acad. Sci. Paris 184 (1927), 317–320.Google Scholar
  513. [3]
    Aleksandroff, P. S. [P. S. Aleksandrov]: ‘Untersuchungen über Gestalt und Lage abgeschlossener Mengen beliebiger Dimension’, Ann. of Math. (2) 30 (1929), 101–187.Google Scholar
  514. [4]
    Pontryagin, L. S.: Math. Ann. 105, no. 2 (1931), 165–205.MathSciNetCrossRefzbMATHGoogle Scholar
  515. [5]
    Dowker, C. H.: ‘Mapping theorems for non-compact spaces’, Amer. J. Math. 69 (1947), 200–242.MathSciNetCrossRefzbMATHGoogle Scholar
  516. [6]
    Steenrod, N. E. and Eilenberg, S.: Foundations of algebraic topology, Princeton Univ. Press, 1966.Google Scholar
  517. [7]
    Sklyarenko, E. G.: ‘On Homology theory associated with the Aleksandrov—Čech cohomology’, Russian Math. Surveys 34, no. 6 (1979), 103–137. (Uspekhi Mat. Nauk 34, no. 6 (1979), 90–118 )MathSciNetzbMATHGoogle Scholar
  518. [8]
    Massey, W. S.: Notes on homology and cohomology theory, Yale Univ. Press, 1964, Chapt. 1–3; 8; Appendix to Chapt. 6.MathSciNetGoogle Scholar
  519. [9]
    Čech, E.: ‘Théorie générale de l’homologie dans un espace quelconque’, Fund. Math. 19 (1932), 149–183.Google Scholar
  520. [1]
    Whittaker, E. T. and Watson, G. N.: A course of modern analysis, Cambridge Univ. Press, 1927.zbMATHGoogle Scholar
  521. [A1]
    Spanier, E. H.: Algebraic topology, McGraw-Hill, 1966.zbMATHGoogle Scholar
  522. [A2]
    Brown, R.: Elements of modern topology, McGraw-Hill, 1968.zbMATHGoogle Scholar
  523. [A3]
    Maunder, C. R. F.: Algebraic topology, van Nostrand, 1970, Section 7. 5.Google Scholar
  524. [1]
    Rokhlin, V. A. and Fuks, D. B.: Beginner’s course in topology. Geometric chapters, Springer, 1984 (translated from the Russian).zbMATHGoogle Scholar
  525. [A1]
    Jănich, K.: Topology, Springer, 1984, Chapt. VII. AMS 1980CrossRefGoogle Scholar
  526. [1]
    Drozd, Yu. A. and Kirichenko, V. V.: Finite-dimensional algebras, Kiev, 1980 (in Russian).zbMATHGoogle Scholar
  527. [2]
    Skornyakov, L. A.: Elements of general algebra, Moscow, 1983 (m Russian).zbMATHGoogle Scholar
  528. [A1]
    Peirce, R. S.: Associative algebras, Springer, 1980.Google Scholar
  529. [A2]
    Albert, A. A.: Structure of algebras, Amer. Math. SOC., 1939.Google Scholar
  530. [A3]
    Deuring, M.: Algebren, Springer, 1935.Google Scholar
  531. [A4]
    Herstein, I.: Noncommutative rings, Math. Assoc. Amer., 1968.zbMATHGoogle Scholar
  532. [A5]
    Jacobson, N.: Structure of rings, Amer. Math. Soc., 1956.zbMATHGoogle Scholar
  533. [1]
    Bylov, B. F., Vinograd, R. E., Grobman, D. M. and Nemytski, V. V.: The theory of Lyapunov exponents and its applications to problems of stability, Moscow, 1966 (in Russian).Google Scholar
  534. [2]
    Izobov, N. A.: ‘Linear systems of ordinary differential equations’, J. Soviet Math. 5, no. 1 (1974), 46–96. (Itogi Nauk. Mat. Anal 12, 71–146 )CrossRefGoogle Scholar
  535. [3A]
    Millionshchikov, V. M.: Typical properties of conditional exponential stability II’, Differential equations 19, no$19, 1126–1132. (DifferentsiaVnye Uravneniya 19, no. 9 (1983), 1503–1510 )MathSciNetGoogle Scholar
  536. [B]
    Millionshchikov, V. M.: ‘Typical properties of conditional exponential stability VI’ Differential equations 20, no. 6, 707– 715. (DifferentsiaVnye Uravneniya 20, no. 6 (1984))Google Scholar
  537. [3C]
    Millionshchikov, V. M.: ‘Typical properties of conditional exponential stability VII’, Differential equations 20, no. 8, 1005–1013. (DifferentsiaVnye Uravneniya 20, no. 8 (1984), 1366 1376 )Google Scholar
  538. [A1]
    Nemytski, V. V. and Stepanov, V. V.: Qualitative theory of differential equations, Princeton Univ. Press, 1960 (translated from the Russian).Google Scholar
  539. [1]
    Gnedenko, B. V.: A course of probability theory, Moscow, 1969 (in Russian).Google Scholar
  540. [2]
    Feller, W.: An introduction to probability theory and its applications, 1–2, Wiley, 1957–1971.zbMATHGoogle Scholar
  541. [3]
    Cramér, H.: Mathematical methods of statistics, Princeton Univ. Press, 1946.zbMATHGoogle Scholar
  542. [4]
    Gnedenko, B. V. and Kolmogorov, A. N.: Limit distributions for sums of independent random variables, Addison-Wesley, 1954 (translated from the Russian).zbMATHGoogle Scholar
  543. [5]
    Ibragimov, I. A. and Linnik, Yu. V.: Independent and stationary sequences of random variables, Wolters-Noordhoff, 1971 (translated from the Russian).zbMATHGoogle Scholar
  544. [6]
    Petrov, V. V.: Sums of independent random variables, Springer, 1975 (translated from the Russian).Google Scholar
  545. [7]
    Zolotarev, V. M.: ‘A generalization of the Lindeberg—Feller theorem’, Theory Probab. Appl. 12 (1967), 608–618. (Teor. Veroyatnost. i Primenen. 12, no. 4 (1967), 666–677 )MathSciNetCrossRefGoogle Scholar
  546. [8]
    Rotar’, V. I.: ‘An extension of the Lindeberg—Feller theorem’, Math. Notes 18 (1975), 123–128. (Mat. Zametki 18, no. 1 (1975), 129–135 )MathSciNetGoogle Scholar
  547. [9]
    Chebyshev, P. L.: Selected works, Moscow, 1955 (in Russian).Google Scholar
  548. [10]
    Bhattacharya, R. H. and Rao, R. R.: Normal approximation and asymptotic expansions, Wiley, 1976.zbMATHGoogle Scholar
  549. [11]
    Sazonov, V. V.: Normal aproximation: some recent advances, Springer, 1981 (translated from the Russian).zbMATHGoogle Scholar
  550. [12]
    Bernshten, S. N.: Collected works, 4, Moscow, 1964 (in Russian).Google Scholar
  551. [13]
    Markov, A. A.: Selected works, Moscow, 1951 (in Russian).zbMATHGoogle Scholar
  552. [14]
    Statulyavichus, V. A.: Teor. Veroyatnost. i Primerien. 5, no. 2 (1960).Google Scholar
  553. [15]
    Lévy, P.: Théorie de Vaddition des variables aléatoires, Gauthier-Villars, 1937.Google Scholar
  554. [A1]
    Loéve. M.: Probability theory, v. Nostrand, 1963.Google Scholar
  555. [1]
    Gorenstein, D.: Finite groups, Harper 0026amp; Row, 1968.zbMATHGoogle Scholar
  556. [A1]
    Hall, P.: The theory of groups, MacMillan, 1959, Chapt. 10.zbMATHGoogle Scholar
  557. [1]
    Waerden, B. L. Van Der: Algebra, 1–2, Springer, 1967–1971 (translated from the German).zbMATHGoogle Scholar
  558. [2]
    Drozd, Yu. A. and Kirichenko, V. V.: Finite-dimensional algebras, Kiev, 1980 (in Russian).zbMATHGoogle Scholar
  559. [A1]
    Peirce, R. S.: Associative algebras, Springer, 1980.Google Scholar
  560. [A2]
    Albert, A. A.: Structure of algebras, Amer. Math. Soc., 1939.Google Scholar
  561. [A3]
    Deuring, M.: Algebren, Springer, 1935.Google Scholar
  562. [A4]
    Herstein, I.: Noncommutative rings, Math. Assoc. Amer., 1968.zbMATHGoogle Scholar
  563. [A5]
    Jacobson, N.: Structure of rings, Amer. Math. Soc., 1956.zbMATHGoogle Scholar
  564. [1]
    Jacobson, N.: Structure of rings, Amer. Math. Soc., 1956.zbMATHGoogle Scholar
  565. [1]
    Amel’kin, V. V., Lukashevich, N. A. and Sadovski, A. P.: Non-linear oscillations in second-order systems, Minsk, 1982 (in Russian).Google Scholar
  566. [A1]
    Nemytski, V. V. and Stepanov, V. V.: Qualitative theory of differential equations, Princeton Univ. Press, 1960 (translated from the Russian).Google Scholar
  567. [A2]
    Andronov, A. A., Leontovich, E. A., Gordon, I. I. and Maier, A. G.: Theory of bifurcations of dynamic systems on a plane, Israel Progr. Sci. Transí., 1971 (translated from the Russian).Google Scholar
  568. [A3]
    Arnol’d, V. I.: Geometrical methods in the theory of ordinary differential equations, Springer, 1983 (translated from the Russian).Google Scholar
  569. [1A]
    Poincaré, H.: ‘Mémoire sur les courbes définiés par une équation différentielle’, J. de Math. 7 (1881), 375–422.Google Scholar
  570. [1B]
    Poincare, H.: ‘Mémoire sur les courbes définiés par une équation différentielle’, J. de Math. 8 (1882), 251–296.Google Scholar
  571. [1C]
    Poincare, H.: ‘Mémoire sur les courbes définiés par une équation différentielle’, J de Math. 1 (1885), 167–244.Google Scholar
  572. [1D]
    Poincare, H.: ‘Mémoire sur les courbes définiés par une équation différentielle’, J. de Math. 2 (1886), 151–217.Google Scholar
  573. [2]
    Lyapunov, A. M.: Problème général de la stabilité du mouvement, Princeton Univ. Press, reprint, 1947 (translated from the Russian).zbMATHGoogle Scholar
  574. [3]
    Amel’kin, V. V.: ‘On the question of the isochronism of the centre of two-dimensional analytic differential systems’, Differential Eq. 13 (1977), 667–674.zbMATHGoogle Scholar
  575. [4]
    Sibirski, K. S.: Algebraic invariants of differential equations and matrices, Kishinev, 1976 (in Russian).Google Scholar
  576. [A1]
    Nemytski, V. V. and Stepanov, V. V.: Qualitative theory of differential equations, Princeton Univ. Press, 1960 (translated from the Russian).Google Scholar
  577. [1]
    Kurosh, A. G.: The theory of groups, 1–2, Chelsea, 1955–1956 (translated from the Russian).Google Scholar
  578. [1]
    Birkhoff, G. D.: ‘Ueber gewisse Zentralbewegungen dynam- ischer Systeme’, Nachr. Gesells. Wiss. Gottingen Math. Phys. Kl., no. 1 (1926), 81–92. Collected Math. Papers, Vol. II, pp. 283–294.Google Scholar
  579. [2]
    Birkhoff, G. D.: Dynamical systems, Amer. Math. Soc., 1927.zbMATHGoogle Scholar
  580. [3]
    Nemytski, V. V. and Stepanov, V. V.: Qualitative theory of dif-ferential equations, Princeton Univ. Press, 1960 (translated from the Russian).Google Scholar
  581. [4]
    Sibirski, K. S.: Introduction to topological dynamics, Noordhoff, 1975 (translated from the Russian).Google Scholar
  582. [5]
    Schwartz, A. F. and Thomas, E. S.: ‘The depth of the centre of 2-manifolds’, in Global stability, Proc. Symp. Pure Math., Vol. 14, Amer. Math. Soc., 1970, pp. 253–264.MathSciNetGoogle Scholar
  583. [6]
    Neumann, D. A.: ‘Central sequences in flows on 2-manifolds of finite genus’, Proc. Amer. Math. Soc. 61, no. 1 (1976), 39–43.MathSciNetCrossRefGoogle Scholar
  584. [7]
    Sharkov’ski, O. M.: ‘Fixed points and the centre of a continuous mapping of the line into itself’, Dopov. Akad. Nauk. Ukr.RSR 7 (1964), 865–868 (in Russian). English summary.Google Scholar
  585. [8]
    Maer, A. G.: ‘On central trajectories and a problem of Birkhoff’, Mat. Sb. 26, no. 2 (1950), 265–290 (in Russian).Google Scholar
  586. [9]
    Shil’nikov, L. P.: ‘On the work of A.G. Maer on central motions’, Math. Notes 5, no13 (1969), 204–206. (Mat. Zametki 5, no. 3 (1969), 335–339 )MathSciNetGoogle Scholar
  587. [10]
    Neumann, D. A.: ‘Central sequences in dynamical systems’, Amer. J. Math. 100, no. 1 (1978), 1–18.MathSciNetCrossRefzbMATHGoogle Scholar
  588. [1]
    Kelley, J. L.: General topology, Springer, 1975.zbMATHGoogle Scholar
  589. [2]
    Gillman, L. and Jerison, M.: Rings of continuous functions, v. Nostrand-Reinhold, 1960.zbMATHGoogle Scholar
  590. [1]
    Nemytski, V. V. and Stepanov, V. V.: Qualitative theory of differential equations, Princeton Univ. Press, 1960 (translated from the Russian).Google Scholar
  591. [2]
    Dulac, H.: ‘Sur les cycles limites’, Bull. Soc. Math. France 51 (1923), 45–188.MathSciNetzbMATHGoogle Scholar
  592. [3]
    Il’yashenko, Yu. S.: ‘Dulac’s memoir ‘On limit cycles’ and related problems of the local theory of differential equations’, Russian Math. Surveys 40, no$16 (1985), 1–49. (Uspekhi Mat. Nauk 40, no. 6 (1985), 41–78 )MathSciNetGoogle Scholar
  593. [1]
    Cesàro, E.: Vorlesungen übernatürliche Geometrie, Teubner, 1901.Google Scholar
  594. [2]
    Savelov, A. A.: Plane curves, Moscow, 1960 (in Russian).Google Scholar
  595. [1]
    Cesàro, E.: Bull Sci. Math. 14, no. 1 (1890), 114–120.Google Scholar
  596. [2]
    Hardy, G. H.: Divergent series, Clarendon, 1949.zbMATHGoogle Scholar
  597. [3]
    Zygmund, A.: Trigonometric series, 1, Cambridge Univ. Press, 1979.Google Scholar
  598. [4]
    Baron, S. A.: Introduction to the theory of summability of series, Tartu, 1966 (in Russian).Google Scholar
  599. [1]
    Ceva, G.: De lineis rectis se invicem secantibus statica constructio, Milan, 1678.Google Scholar
  600. [A1]
    Berger, M.: Geometry, 1, Springer, 1987 (translated from the French).Google Scholar
  601. [1]
    Steenrod, N. E. and Eilenberg, S.: Foundations of algebraic topology, Princeton Univ. Press, 1966.Google Scholar
  602. [2]
    Hilton, P. J. and Wylie, S.: Homology theory. An introduction to algebraic topology, Cambridge Univ. Press, 1960.CrossRefzbMATHGoogle Scholar
  603. [1]
    Birkhoff, G.: Lattice theory, Colloq. Publ., 25, Amer. Math. Soc., 1973.Google Scholar
  604. [2]
    Kurosh, A. G.: Lectures on general algebra, Chelsea, 1963 (translated from the Russian).Google Scholar
  605. [3]
    Skornyakov, L. A.: Elements of lattice theory, A. Hilger & Hindushtan Publ. Comp., Bristol & Delhi, 1977 (translated from the Russian).Google Scholar
  606. [A1]
    Burgess, J. P.: ‘Forcing’, in J. Barwise (ed.): Handbook of mathematical logic, North-Holland, 1977, pp. 403–452.Google Scholar
  607. [1]
    Conley, CH.: Isolated invariant sets and the Morse index, Amer. Mat. Soc., 1978.zbMATHGoogle Scholar
  608. [2]
    Shub, M.: Global stability of dynamical systems, Springer, 1987 (translated from the French).zbMATHGoogle Scholar
  609. [3]
    Sharkovski, A. N. and Dobrynski, V. A.: Dynamical systems and problems of stability of solutions of differential equations, Kiev, 1973, pp. 125–174 (in Russian).Google Scholar
  610. [A1]
    Block, L. and Franke, J. E.: The chain recurrent set, attractors, and explosions’, Ergodic Theory and Dynamical Systems 5 (1985), 321–327.MathSciNetCrossRefzbMATHGoogle Scholar
  611. [A2]
    Bowen, R.: On Axiom A diffeomorphisms, Amer. Math. Soc., 1978.zbMATHGoogle Scholar
  612. [1]
    Bourbaki, N.: Elements of mathematics. Lie groups and Lie algebras, Addison-Wesley, 1975 (translated from the French).zbMATHGoogle Scholar
  613. [2]
    Vinberg, E. B.: ‘Discrete linear groups that are generated by reflections’, Izv. Akad Nauk SSSR Ser. Mat. 35, no. 5 (1971), 1072–1112 (in Russian).MathSciNetzbMATHGoogle Scholar
  614. [A1]
    Tits, J.: ‘A local approach to buildings’, in The geometric vein. The Coxeter Festschrift, Springer, 1981, pp. 519–547.Google Scholar
  615. [A2]
    Bourbaki, N.: Groupes algèbres de Lie, Hermann, 1968, Chapt. 4. Groupes de Coxeter et systèmes de Tits.Google Scholar
  616. [1]
    Khinchin, A. Ya.: ‘On the basic theorems of information theory’, Uspekhi Mat. Nauk 11, no. 1 (1956), 17–75 (in Russian).zbMATHGoogle Scholar
  617. [2]
    Feinstein, A.: Foundations of information theory, McGraw- Hill, 1968.Google Scholar
  618. [3]
    Wolfowitz, J.: Coding theorems of information theory, Springer’1964zbMATHGoogle Scholar
  619. [1]
    Dobrushin, R. L.: Transmission of information in channels with feedback’, Teor. Veroyatnost. i Primenen. 3, no. 4 (1958), 395–412 (in Russian). English summary.MathSciNetzbMATHGoogle Scholar
  620. [2]
    Feedback communication systems, New York, 1961.Google Scholar
  621. [3]
    Zigangirov, K. SH.: ‘Upper bounds for the error probability in channels with feedback’, Probl. Peredachi Informatsi 6, no. 2 (1970), 87–92 (in Russian).MathSciNetzbMATHGoogle Scholar
  622. [4]
    Turin, G. L.: Notes on digital communication, New York- Cincinatti-Toronto-London-Melbourne, 1969.Google Scholar
  623. [1]
    Shannon, G: Papers on information theory and cybernetics, Moscow, 1963 (in Russian; translated from the English).zbMATHGoogle Scholar
  624. [2]
    Meulen, E. C. Van Der: ‘Advances in multi-user communication channels’, in Proc. 1975 IEEE-USSR Joint Workshop Inform. Theory. Moscow December, 1975, Inst. Electr. Electron. Eng., 1976, pp. 227–247.Google Scholar
  625. [3]
    Cover, T. M.: Broadcast channels1, IEEE Trans. Inform. Theory 18, no. 1 (1972), 2–14.MathSciNetCrossRefzbMATHGoogle Scholar
  626. [4]
    Slepian, D. and Wolf, J. K.: ‘A coding theorem for multiple access channels with correlated sources’, Bell System Techn. J. 52, no. 7 (1973), 1037–1076.MathSciNetzbMATHGoogle Scholar
  627. [5]
    Csiszar, I. and Körner, J.: Information theory. Coding theorems for discrete memoryless systems, Akad. Kiado, 1981.zbMATHGoogle Scholar
  628. [A1]
    Bergé, P., Pomeau, Y. and Vidal, CH.: L’ordre dans le chaos, Hermann, 1984.Google Scholar
  629. [A2]
    Bowen, R.: Equilibrium states and the ergodic theory of Anosov diffeomorphisms, Springer, 1975.zbMATHGoogle Scholar
  630. [A3]
    Collet, P. and Eckmann, J.-P.: Iterated maps on the interval as dynamical systems, Birkhauser, 1980.zbMATHGoogle Scholar
  631. [A4]
    Guckenheimer, J. and Holmes, P.: Non-linear oscillations, dynamical systems, and bifurcations of vector fields, Springer, 1983.Google Scholar
  632. [A5]
    Hénon, M.: ‘A two-dimensional mapping with a strange attractor’, Comm. Math. Phys. 50 (1976), 69–77.MathSciNetCrossRefzbMATHGoogle Scholar
  633. [A6]
    Sparrow, C.: The Lorenz equations: bifurcations, chaos, and strange attractors, Springer, 1982.CrossRefzbMATHGoogle Scholar
  634. [A7]
    Devaney, R. L.: An introduction to chaotic dynamical systems, Benjamin/Cummings, 1986.zbMATHGoogle Scholar
  635. [1]
    Chaplygin, S. A.: A new method of approximate integration of differential equations, Moscow-Leningrad, 1950 (in Russian).Google Scholar
  636. [2]
    Luzin, N. N.: ‘On Academician S.A. Chaplygin’s method of approximate integration’, Trudy Ts.A.G.I. 141 (1932), 1–32 (in Russian).Google Scholar
  637. [3]
    Mikhlin, S. G. and Smolitski, KH. L.: Approximation methods for the solution of differential and integral equations, Moscow, 1965, pp. 22–26 (in Russian).Google Scholar
  638. [A1]
    Collatz, L.: The numerical treatment of differential equations, Springer, 1966.Google Scholar
  639. [1]
    Mamedov, Ya. D., Ashirov, S. and Atdaev, S.: Theorems on inequalities, Ashkhabad, 1980 (in Russian).Google Scholar
  640. [A1]
    Petrovski, I. G.: Ordinary differential equations, Prentice Hall, 1966 (translated from the Russian).zbMATHGoogle Scholar
  641. [1]
    Chapman, S. and Cowling, T. D.: The mathematical theory of non-uniform gases, Cambridge Univ. Press, 1952.Google Scholar
  642. [2]
    Uhlenbeck, G. E. and Ford, G. V.: Lectures in statistical mechanics, Amer. Math. Soc., 1963.zbMATHGoogle Scholar
  643. [3]
    Hirschfelder, J., Curtis, C. F. and Bird, R. B.: The molecular theory of gases and liquids, Wiley, 1954.zbMATHGoogle Scholar
  644. [4A]
    Grad, H.: ‘Asymptotic theory of the Boltzmann equation I’, Physics of Fluids 6 (1963), 147.MathSciNetCrossRefzbMATHGoogle Scholar
  645. [4B]
    Grad, H.: ‘Asymptotic theory of the Boltzmann equation II’, in Rarified gas dynamics, Acad. Press, 1963.Google Scholar
  646. [5]
    Grad, H.: ‘Principles of the kinetic theory of gases’, in S. Flügge (ed.): Handbuch der Physik, Vol. 12, Springer, 1958, pp. 205–294.Google Scholar
  647. [1]
    Bourbaki, N.: Elements of mathematics. Lie groups and Lie algebras, Addison-Wesley, 1975 (translated from the French).zbMATHGoogle Scholar
  648. [2]
    Letes, D. A.: ‘Formulas for the characters of irreducible finite-dimensional representations of simple Lie superalgebras’, Fund. Anal, and Appl. 14 (1980), 106–109. (Funktsional. Anal, i Prilozhen. 14, no. 2 (1980), 35–38 )Google Scholar
  649. [3]
    Kac, V. G.: ‘Infinite-dimensional algebras, Dedekind’s function, classical Möbius function and the very strange formula’, Adv. in Math. 30, no. 2 (1978), 85–136.MathSciNetCrossRefzbMATHGoogle Scholar
  650. [4]
    Lepowsky, J.: Lie algebras and related topics, Springer, 1982.Google Scholar
  651. [A1]
    Macdonald, I. G.: ‘Affine root systems and Dedekind’s eta function’, Invent. Math. 15 (1972), 91–143.MathSciNetCrossRefzbMATHGoogle Scholar
  652. [A2]
    Kac, V. G.: ‘Infinite-dimensional Lie algebras and Dedekind’s eta function’, Funct. Anal, and Appl. 8 (1974), 68–70. (Funktsional. Anal, i Prilozhen. 8 (1974), 77–78 )CrossRefGoogle Scholar
  653. [A3]
    Looyenga, E.: ‘Invariant theory for generalized root systems’, Invent. Math. 61 (1980), 1–32.MathSciNetCrossRefGoogle Scholar
  654. [A4]
    Lepowsky, J.: ‘Affine Lie algebras and combinatorial identities’, in Proc. 1981 Rutgers Lie Algebras Conference, Lecture Notes in Math., Vol. 933, Springer, 1982.Google Scholar
  655. [A5]
    Kac, V. G.: Infinite-dimensional Lie algebras, Birkhauser, 1983.zbMATHGoogle Scholar
  656. [A6]
    Kac, V. G.: Representations of classical Lie superalgebras, Lecture Notes in Math., 676, Springer, 1978, pp. 597–626.CrossRefGoogle Scholar
  657. [1]
    Borel, A.: Linear algebraic groups, Benjamin, 1969.zbMATHGoogle Scholar
  658. [2]
    Morris, S. A.: Pontryagin duality and the structure of locally compact Abelian groups, London Math. Soc. Lecture Notes, 29, Cambridge Univ. Press, 1977.CrossRefzbMATHGoogle Scholar
  659. [3]
    Pontryagin, L. S.: Topological groups, Princeton Univ. Press, 1958 (translated from the Russian).Google Scholar
  660. [4]
    Fuchs, L.: Infinite abelian groups, 1, Acad. Press, 1970.zbMATHGoogle Scholar
  661. [5]
    Humphreys, J. E.: Linear algebraic groups, Springer, 1975.zbMATHGoogle Scholar
  662. [A1]
    Hewitt, E. and Ross, K. A.: Abstract harmonic analysis, 1, Springer, 1963.zbMATHGoogle Scholar
  663. [A2]
    Bourbaki, N.: Elements of mathematics. Spectral theories, Addison-Wesley, 1977 (translated from the French).Google Scholar
  664. [1]
    Dixmier, J.: C*-algebras, North-Holland, 1977 (translated from the French).zbMATHGoogle Scholar
  665. [1]
    Serre, J.-P.: Lie algebras and Lie groups, Benjamin, 1965 (translated from the French).zbMATHGoogle Scholar
  666. [2]
    Dixmier, J.: Algèbres enveloppantes, Gauthier-Villars, 1974.Google Scholar
  667. [1]
    Borel, A.: Linear algebraic groups, Benjamin, 1969.zbMATHGoogle Scholar
  668. [2]
    Morris, S. A.: Pontryagin duality and the structure of locally compact Abelian groups, London Math. Soc. Lecture Notes, 29, Cambridge Univ. Press, 1977.CrossRefzbMATHGoogle Scholar
  669. [3]
    Hewitt, E. and Ross, K. A.: Abstract harmonic analysis, 1, Springer, 1963.zbMATHGoogle Scholar
  670. [1]
    Kirillov, A. A.: Elements of the theory of representations, Springer, 1976 (translated from the Russian).zbMATHGoogle Scholar
  671. [2]
    Curtis, C. W. and Reiner, I.: Representation theory offinite groups and associative algebras, Interscience, 1962.Google Scholar
  672. [3]
    Dixmier, J.: C algebras, North-Holland, 1977 (translated from the French).zbMATHGoogle Scholar
  673. [4]
    Frobenius, G. F.: J.-P. Serre (ed.): Gesammelte Abhandlungen, Springer, 1968.Google Scholar
  674. [5]
    Namark, M. A.: Theory of group representations, Springer, 1982 (translated from the Russian).CrossRefGoogle Scholar
  675. [6]
    Littlewood, D.: The theory of group characters and matrix representations of groups, Clarendon Press, 1950.Google Scholar
  676. [1]
    Kirillov, A. A.: Elements of the theory of representations, Springer, 1976 (translated from the Russian).zbMATHGoogle Scholar
  677. [2]
    Curtis, C. W. and Reiner, I.: Representation theory of finite groups and associative algebras, Interscience, 1962.zbMATHGoogle Scholar
  678. [3]
    Dixmier, J.: C-algebras, North-Holland, 1977 (translated from the French).zbMATHGoogle Scholar
  679. [1]
    Clifford, A. H. and Preston, G. B.: The algebraic theory of semigroups, 1, Amer. Math. Soc., 1961.zbMATHGoogle Scholar
  680. [2]
    Lesokhin, M. M.: ‘Characters of commutative semigroups I’, Izv. Vuz. Mat. 8 (1970), 67–74 (in Russian).Google Scholar
  681. [3]
    Austin, C.: ‘Duality theorems for some commutative semi-groups’, Trans. Amer. Math. Soc. 109, no. 2 (1963), 245–256.MathSciNetCrossRefzbMATHGoogle Scholar
  682. [1]
    Namark, M. A.: Normed rings, Reidel, 1984 (translated from the Russian).Google Scholar
  683. [1]
    Misohata, S.: The theory of partial differential equations, Cam-bridge Univ. Press, 1973.Google Scholar
  684. [2]
    Kamke, E.: Differentialgleichungen: Lösungsmethoden und Lösungen, 2. Partielle Differentialgleichungen erster Ordnung für die gesuchte Funktion, Akad. Verlagsgesell., 1944.zbMATHGoogle Scholar
  685. [3]
    Hartman, P.: Ordinary differential equations, Birkhäuser, 1982.zbMATHGoogle Scholar
  686. [4]
    Petrowski, I. G. [I. G. Petrovski]: Vorlesungen über partielle Differentialgeleichungen, Teubner, 1965 (translated from the Russian).Google Scholar
  687. [5]
    Koshlyakov, N. S., Gliner, E. B. and Smirnov, M. M.: Partial differential equations, Moscow, 1970 (in Russian).Google Scholar
  688. [6]
    Wladimirow, W. S. [V. S. Vladimirov]: Die Gleichungen der mathematischen Physik, Deutsch. Verlag Wissenschaft., 1973 (translated from the Russian).Google Scholar
  689. [7]
    Mikhlin, S. G.: A course of mathematical physics, Moscow, 1968 (in Russian).Google Scholar
  690. [8]
    Tichonoff, A. N. [A. N. Tikhonov] and Samarski, A. A.: Differentialgleichungen der mathematischen Physik, Deutsch. Verlag Wissenschaft., 1959 (translated from the Russian).Google Scholar
  691. [A1]
    Courant, R. and Hilbert, D.: Methods of mathematical physics, 1–2, Interscience, 1953–1962 (translated from the German).zbMATHGoogle Scholar
  692. [A2]
    Garabedian, P.: Partial differential equations, Wiley, 1964.zbMATHGoogle Scholar
  693. [A3]
    Hörmander, L.: The analysis of linear partial differential operators, 1–4, Springer, 1983–1985.Google Scholar
  694. [A4]
    John, F.: Partial differential equations, Springer, 1974.Google Scholar
  695. [A5]
    Jeffrey, A.: Quasilinear hyperbolic systems and waves, Pitman, 1976.zbMATHGoogle Scholar
  696. [A6]
    Cartan, E.: Les systèmes différentiels extrérieurs et leurs applications géométriques, Hermann, 1945.Google Scholar
  697. [A7]
    Petrovski, I. G.: Lectures on partial differential equations, Interscience, 1954 (translated from the Russian).Google Scholar
  698. [1]
    Borel, A.: Collected papers, 1, Springer, 1973.Google Scholar
  699. [2A]
    Atiyah, M. F. and Singer, I. M.: ‘The index of elliptic opera-tors, II’ Ann. of Math. (2) 87 (1968), 484–530.MathSciNetCrossRefzbMATHGoogle Scholar
  700. [2B]
    Atiyah, M. F. and Singer, I. M.: ‘The index of elliptic operators, II’, Ann. of Math (2) 87 (1968), 531–545.MathSciNetCrossRefzbMATHGoogle Scholar
  701. [2C]
    Atiyah, M. F. and Singer, I. M.: ‘The index of elliptic opera-tors, III’, Ann. of Math. (2) 87 (1968), 546–604.MathSciNetCrossRefzbMATHGoogle Scholar
  702. [2D]
    Atiyah, M. F. and Singer, I. M.: ‘The index of elliptic operators, IV’, Ann. of Math. (2) 93 (1971), 119–138.MathSciNetCrossRefzbMATHGoogle Scholar
  703. [2E]
    Atiyah, M. F. and Singer, I. M.: ‘The index of elliptic opera-tors, V’, Ann. of Math. (2) 93 (1971), 139–149.MathSciNetCrossRefGoogle Scholar
  704. [3]
    Bott, R.: ‘Lectures on characteristic classes’, in Lectures on algebraic and differential topology, Lecture Notes in Math., Vol. 279, Springer, 1972, pp. 1–94.CrossRefGoogle Scholar
  705. [4]
    Milnor, J.: Lectures on characteristic classes, Princeton Univ. Press, 1957. Notes by J. Stasheff.Google Scholar
  706. [5]
    Pontryagin, L. S.: ‘Mappings of the three-dimensional sphere into an n-dimensional complex’, Dokl. Akad Nauk SSSR 35 (1942), 35–39 (in Russian).Google Scholar
  707. [6]
    Stiefel, E.: Comm. Math. Helv. 8, no. 4 (1935), 305–353.MathSciNetCrossRefGoogle Scholar
  708. [7]
    Whitney, H.: Bull. Amer. Math. Soc. 43 (1937), 785–805.MathSciNetCrossRefGoogle Scholar
  709. [8]
    Chern, S.-S.: ‘Characteristic classes of Hermitian manifolds’, Ann. of Math. (2) 47, no. 1 (1946), 85–121.MathSciNetCrossRefzbMATHGoogle Scholar
  710. [9]
    Novikov, S. P.: ‘Topological invariance of Pontryagin classes’, Soviet Math. Doklady 6, no$14 (1965), 921–923. (Dokl. Akad Nauk SSSR 163 (1965), 298–300 )Google Scholar
  711. [10]
    Milnor, J.: ‘On characteristic classes for spherical fibre spaces’, Comm. Math. Helv. 43, no. 1 (1968), 51–77.MathSciNetCrossRefzbMATHGoogle Scholar
  712. [11]
    Stasheff, J.: ‘More characteristic classes for spherical fibre spaces’, Comm. Math. Helv. 43, no. 1 (1968), 78–86.MathSciNetCrossRefzbMATHGoogle Scholar
  713. [12A]
    Borel, A. and Hirzebruch, F.: ‘Characteristic classes and homogeneous spaces, I’, Amer. J. Math. 80 (1958), 458–538.MathSciNetCrossRefGoogle Scholar
  714. [12B]
    Borel, A. and Hirzebruch, F.: ‘Characteristic classes and homogeneous spaces, II’, Amer. J. Math. 81 (1959), 315–382.MathSciNetCrossRefGoogle Scholar
  715. [12C]
    Borel, A. and Hirzebruch, F.: ‘Characteristic classes and homogeneous spaces, III’, Amer. J. Math. 82 (1960), 491–504.MathSciNetCrossRefGoogle Scholar
  716. [13]
    Stong, R. E.: Notes on cobordism theory, Princeton Univ. Press, 1968.zbMATHGoogle Scholar
  717. [14]
    Milnor, J. and Stasheff, J.: Characteristic classes, Princeton Univ. Press, 1974.zbMATHGoogle Scholar
  718. [A1]
    Husemoller, D.: Fibre bundles, McGraw-Hill, 1966.zbMATHGoogle Scholar
  719. [A2]
    Switzer, R. M.: Algebraic topology-homotopy and homology, Springer, 1975.zbMATHGoogle Scholar
  720. [A1]
    Nemytskit, V. V. and Stepanov, V. V.: Qualitative theory of differential equations, Princeton Univ. Press, 1960 (translated from the Russian).Google Scholar
  721. [1]
    Kolmogorov, A.N.: C.R. Acad. Sci. Pahs 200 (1935), 1717–1718.Google Scholar
  722. [2]
    Prokhorov, YU.V.: ‘Convergence of random processes and limit theorems in probability theory’, Theory Probab. Appl. 1 (1956), 157–214. (Teor. Veroyatnost. i Primen. 1, no. 2 (1956), 177–238 )CrossRefGoogle Scholar
  723. [3]
    Sazonov, V.V.: ‘A remark on characteristic functionals’, Theory Probab. Appl. 3 (1958), 188–192. (Teor. Veroyatnost. i Primen. 3, no. 2 (1958), 201–205 )MathSciNetCrossRefGoogle Scholar
  724. [4]
    Vakhania, N.N., Tarieladze, V.I. and Chobanyan, S.A.: Probability distributions on Banach spaces, Reidel, 1987 (translated from the Russian).zbMATHGoogle Scholar
  725. [5]
    Vakhania, N.N.: ‘Sur les répartitions de probabilités dans les espaces de suites numériques’, C.R Acad. Sci. Paris 260 (1965), 1560–1562.MathSciNetzbMATHGoogle Scholar
  726. [A1]
    Vakhania, N.N.: Probability distributions on linear spaces, North-Holland, 1981 (translated from the Russian).zbMATHGoogle Scholar
  727. [A1]
    Milnor, J.W. and Stasheff, J.D.: Characteristic classes, Princeton Univ. Press, 1974.zbMATHGoogle Scholar
  728. [1]
    Kamke, E.: Differentialgleichungen: Lösungsmethoden und Lösungen, 2. Partielle Differentialgleichungen erster ordung für die gesuchete Funktion, Akad. Verlagsgell., 1944zbMATHGoogle Scholar
  729. [2]
    Hartman, P.: Ordianry differential equations, Birkhäuser, 1982Google Scholar
  730. [A1]
    Courant, R. and Hilbert, D.: Methods of mathematical physics. Partial differential equations, 2, Interscience, 1962 (translated from the German)Google Scholar
  731. [A2]
    Hömander, L.: The analysis of linear partial differential operators, 1, Springer, 1983.Google Scholar
  732. [1]
    Kagan, A.M., Linnik, Yu.V. and Rao, S.R.: Characterization problems in mathematical statistics, Wiley, 1973 (translated from the Russian).zbMATHGoogle Scholar
  733. [1]
    Landkof, N.S.: Foundations of modem potential theory, Springer, 1972 (translated from the Russian).Google Scholar
  734. [2]
    Halmos, P.R.: Measure theory, v. Nostrand, 1950.zbMATHGoogle Scholar
  735. [A1]
    Hewitt, E. and Stromberg, K.R.: Real and abstract analysis, Springer, 1965.zbMATHGoogle Scholar
  736. [A2]
    Jacobs, K.: Measure and integral, Acad. Press, 1978.zbMATHGoogle Scholar
  737. [1]
    Charlier, C.: Application de la théorie des probabilités à Vastronomie, Paris, 1931.Google Scholar
  738. [2]
    Bateman, H. and Erdelyi, A.: Higher transcendental functions. Bessel functions, 2, McGra w-Hill, 1953.Google Scholar
  739. [3]
    Szegö, G.: Orthogonal polynomials, Amer. Math. Soc., 1975Google Scholar
  740. [1]
    Riemann, B.: ‘Über die Hypothesen, welche der Geometrie Zugrunde liegen’, in Das Kontinuum und andere Monographien, Chelsea, reprint, 1973.Google Scholar
  741. [2]
    Rashewski, P.K. [P.K. Rashevskii]: Riemannsche Geometrie und Tensoranalyse, Deutsch. Verlag Wissenschaft., 1959 (translated from the Russian).Google Scholar
  742. [3]
    Sulanke, R. and Wintgen, P.: Differentialgeometrie und Faserbundel, Birkhauser, 1972.Google Scholar
  743. [4]
    Lichnerowicz, A.: Global theory of connections and holonomy groups, Noordhoff, 1976 (translated from the French).zbMATHGoogle Scholar
  744. [5]
    Kobayashi, S. and Nomizu, K.: Foundations of differential geometry, 1, Interscience, 1963.zbMATHGoogle Scholar
  745. [A1]
    Veblen, O. and Whitehead, J.H.C.: The foundations of differential geometry, Cambridge Univ. Press, 1967.Google Scholar
  746. [A2]
    Bishop, R.L. and Crittenden, R.J.: Geometry of manifolds, Acad. Press, 1964.zbMATHGoogle Scholar
  747. [1]
    Modenov, P.S.: Analytic geometry, Moscow, 1969 (in Russian).Google Scholar
  748. [A1]
    Coxeter, H.S.M.: Projective geometry, Blaisdell, 1964.zbMATHGoogle Scholar
  749. [A1]
    Lorentz, G.G.: Approximation of functions, Holt, Rinehart and Winston, 1966, Chapt. 2, Sect. 6.zbMATHGoogle Scholar
  750. [1]
    Chebyshev, P.L.: Complete Collected works, Vol. 2, MoscowGoogle Scholar
  751. [2]
    Guter, R.S., Kudryavtsev, L.D. and Levitan, B.M.: Elements of the theory of functions, Moscow, 1963 (in Russia)Google Scholar
  752. [A1]
    Cheney, E.W.: Introduction to approximation theory, McGraw-Hill, 1966.zbMATHGoogle Scholar
  753. [A2]
    Davis, P.J.: Interpolation and approximation, Dover, reprint, 1975.zbMATHGoogle Scholar
  754. [1]
    Itogi Nauki. Mat. Anal (1967), 75–132 Google Scholar
  755. [1]
    Goluzin, G.M.: Geometric theory of functions of a complex variable, Amer. Math. Soc., 1969 (translate from the Russian).Google Scholar
  756. [2]
    Carleson L.: Selected problems on exceptional sets, v Nostrand, 1967zbMATHGoogle Scholar
  757. [A1]
    Tsuji, M.: Potential theory in modern function theory, Chelsea, reprint, 1975.zbMATHGoogle Scholar
  758. [A2]
    Walsh, J.L.: Interpolation and approximation by rational functions in the complex domain, Amer. Math. Soc., 1956.Google Scholar
  759. [1]
    Chebyshev, P.L.: ‘Mémoire sur les nombres premiers’, J.Math. Pures Appl 17 (1852), 366–390. Oeuvres, Vol. 1, pp.51-70.Google Scholar
  760. [1]
    Chebyshev, P.L.: Mat. Sb 2 (1867), 1–9MathSciNetGoogle Scholar
  761. [2]
    Markov, A.A.: Calculus of probabilities, Moscow, 1924 (in Russian)Google Scholar
  762. [3]
    Kolmogorov, A.N.: Foundations of the theory of probability, Chelsea, reprint, 1950 (translated from the Russian).Google Scholar
  763. [4]
    Karlin, S and Studden, V.: Tchebycheff system: with application in analysis and statistics, Interscience, 1966.Google Scholar
  764. [5]
    Prokhorov, Yu. V.: ‘Multivariate distributions: inequalities and limit theorems’, J. Soviet Math. 2 (1974), 475–488. (Itogi Nauk, I Tekhn, Teor. Veroyatnost. Mat. Stat. Teoret. Kibernet. 10 (1972), 5–24 )MathSciNetCrossRefGoogle Scholar
  765. [1]
    Marchuk, G.I. and Lebedev, V.I.: Numerical methods in the theory of neutron transport, Moscow, 1981 (in Russian).Google Scholar
  766. [2]
    Bakhvalov, N.S.: Numerical methods: analysis, algebra, ordinary differential equations, Mir, 1977 (translated from the Russian).Google Scholar
  767. [3]
    Marchuk, G.I.: Methods of computational mathematics, Moscow, 1980 (in Russian).Google Scholar
  768. [4]
    Samarski, A.A.: Theorie der Differenzverfahren, Akad. Verlagsgesell. Geest u. Portig K.-D., 1984 (translated from the Russian).Google Scholar
  769. [5A]
    Lebedev, V.I. and Finogenov, S.A.: ‘The order of choices of the iteration parameters in the cyclic Chebyshev iteration method’, Zh. Vychisl Mat i Mat. Fiz. 16, no. 2 (1971), 425–438 (in Russian).MathSciNetGoogle Scholar
  770. [5B]
    Lebedev, V.I. and Finogenov, S.A.: ‘Solution of the problem of parameter ordering in Chebyshev iteration methods’, Zh. Vychisl. Mat. i Mat. Fiz 13, no. 1 (1973), 18–33 (in Russian).MathSciNetzbMATHGoogle Scholar
  771. [5C]
    Lebedev, V.I. and Finogenov, S.A.: ‘The use of ordered Chebyshev parameters in iteration methods’, Zh. Vychisl. Mat. i Mat. Fiz. 16, no. 4 (1976), 895–907 (in Russian).MathSciNetzbMATHGoogle Scholar
  772. [6A]
    Lebedev, V.I.: ‘Iterative methods for solving operator equations with spectrum located on several segments’, Zh. Vychisl. Mat. i Mat. Fiz. 9, no. 6 (1969), 1247–1252 (in Russian).zbMATHGoogle Scholar
  773. [6B]
    Lebedev, V.I.: ‘Iteration methods for solving linear operator equations, and polynomials deviating least from zero’, in Mathematical analysis and related problems in mathematics, Novosibirsk, 1978, pp. 89–108 (in Russian).Google Scholar
  774. [A1]
    Flanders, D.A. and Shortley, G.: ‘Numerical determination of fundamental modes’, J. Appl. Physics 21 (1950), 1326–1332.MathSciNetCrossRefzbMATHGoogle Scholar
  775. [A2]
    Forsythe, G.E. and Wasow, W.R.: Finite difference methods for partial differential equations, Wiley, 1960.zbMATHGoogle Scholar
  776. [A3]
    Golub, G.H. and Loan, C.F. Van: Matrix computations, North Oxford Acad., 1983.Google Scholar
  777. [A4]
    Golub, G.H. and Varga, R.S.: ‘Chebyshev semi-iterative methods, successive over-relaxation methods and second-order Richardson iterative methods I. II’. Num. Math. 3 (1961), 147–156; 157-168.MathSciNetCrossRefGoogle Scholar
  778. [A5]
    Manteuffel, T.A.: ‘The Tchebychev iteration for nonsymmetric linear systems’, Num. Math. 28 (1977), 307–327.MathSciNetCrossRefzbMATHGoogle Scholar
  779. [A6A]
    Richardson, L.F.: ‘The approximate arithmetical solution by finite differences of physical problems involving differential equations, with an application to the stresses in a masonry dam’, Philos. Trans. Roy. Soc. London Ser. A 210 (1910), 307–357.Google Scholar
  780. [A6B]
    Richardson, L.F.: ‘The approximate arithmetical solution by finite differences of physical problems involving differential equations, with an application to the stresses in a masonry dam’, Proc. Roy. Soc. London Ser. A 83 (1910), 335–336.CrossRefzbMATHGoogle Scholar
  781. [A7]
    Shortley, G.: ‘Use of Tchebycheff-polynomial operators in the numerical solution of boundary-value problems’, J. Appl. Physics 24 (1953), 392–396.MathSciNetCrossRefzbMATHGoogle Scholar
  782. [A8]
    Sheldon, J.W.: ‘On the numerical solution of elliptic difference equations’, Math. Tables Aids Comp. 9 (1955), 101- 112.MathSciNetCrossRefGoogle Scholar
  783. [A9]
    Stiefel, E.L.: Kernel polynomials in linear algebra and their numerical applications, Appl. Math. Series, 49, Nat. Bur. Stand., 1958.Google Scholar
  784. [A10]
    Varga, R.S.: Matrix iterative analysis, Prentice Hall, 1962.Google Scholar
  785. [A11]
    Wachspress, E.L.: Iterative solution of elliptic systems, and applications to the neutron diffusion equations of nuclear physics, Prentice Hall, 1966.Google Scholar
  786. [IA]
    Chebyshev, P.L.: Collected works, Vol. 5, Moscow-Leningrad, 1951, pp. 7–25 (in Russian).zbMATHGoogle Scholar
  787. [IB]
    Chebyshev, P.L.: Collected works, Vol. 5, Moscow-Leningrad, 1951, pp. 173–176 (in Russian).zbMATHGoogle Scholar
  788. [2]
    Berezin, I.S. and Zhidkov, N.P.: Computing methods, Pergamon, 1973 (translated from the Russian).Google Scholar
  789. [3]
    Nechepurenko, M.I.: Uspekhi Mat. Nauk 9, no. 2 (1954),Google Scholar
  790. [A1]
    Ralston, A.: A first course in numerical analysis, McGraw-Hill, 1965.zbMATHGoogle Scholar
  791. [A2]
    Davis, P.J.: Interpolation and approximation, Dover, reprint, 1975.zbMATHGoogle Scholar
  792. [A3]
    Hildebrand, F.B.. Introduction to numerical analysis, McGraw-Hill, 1974.zbMATHGoogle Scholar
  793. [1]
    Chebyshev, P.L.: Collected works, Vol. 5, Moscow, 1951, pp. 165–170 (in Russian).zbMATHGoogle Scholar
  794. [1]
    Zukhovitskii, S.I. and Avdeeva, L.I.: Linear and convex programming,, Moscow, 1964 (in Russian).Google Scholar
  795. [2]
    Belobrov, P.K.: ‘The Chebyshev point of a system of translates of subspaces in a Banach space’, Mat. Zametki 8, no. 4 (1970), 29–40 (in Russian).MathSciNetGoogle Scholar
  796. [3]
    Eremin, I.I.: ‘Incompatible systems of linear inequalities’, Dokl. Akad. Nauk SSSR 138, no. 6 (1961), 1280–1283 (in Russian).MathSciNetGoogle Scholar
  797. [A1]
    Fox, L. and Parker, I.: Chebyshev polynomials in numerical analysis, Oxford Univ. Press, 1968.Google Scholar
  798. [1]
    Chebyshev, P.L.: Collected works, Vol. 2, Moscow-Leningrad, 1947, pp. 23–51 (in Russian).Google Scholar
  799. [2]
    Szegö, G.: Orthogonal polynomials, Amer. Math. Soc., 1975.Google Scholar
  800. [1]
    Krylov, N.M.: Approximate calculation of integrals, Macmillan, 1962 (translated from the Russian).zbMATHGoogle Scholar
  801. [A1]
    Segun, A. and Abramowitz, M.: Handbook of mathematical functions, Appl. Math. Ser., 55, Nat. Bur. Stand., 1970.Google Scholar
  802. [A2]
    Bernshtetn, S.N.: ‘Sur les formules quadratures de Cotes et Chebyshev’, C.R. Acad. Sci. USSR, 323–326.Google Scholar
  803. [A3]
    Chebyshev, P.L.: ‘Sur les quadratures’, J. Math. Pures Appl. 19, no. 2 (1874), 19–34. Oeuvres, Vol. 2, pp. 165-180.Google Scholar
  804. [A4]
    Hildebrand, F.B.: Introduction to numerical analysis, McGraw-Hill, 1974.zbMATHGoogle Scholar
  805. [A5]
    Davis, P.J. and Rabinowitz, P.: Methods of numerical integration, Acad. Press, 1984.zbMATHGoogle Scholar
  806. [1]
    Chebyshev, P.L.: Complete collected works, Vol. 2, Moscow-Leningrad, 1947, pp. 151–235 (in Russian).Google Scholar
  807. [2]
    Efimov, N.V. and Stechkin, S.B.: ‘Some properties of Chebyshev sets’, Dokl. Akad. Nauk SSSR 118, no. 1 (1958), 17–19 (in Russian).MathSciNetzbMATHGoogle Scholar
  808. [3]
    Garkavi, A.L.: ‘The theory of best approximation in normed linear spaces’, Itogi Nauk. Mat. Anal. 1967 (1969), 75–132 (in Russian).Google Scholar
  809. [4]
    Vlasov, L.P.: ‘Approximative properties of sets in normed linear spaces’, Russian Math. Surveys 28, no. 6 (1973), 1–66. (Uspekhi Mat. Nauk 28, no. 6 (1973), 3–66 )MathSciNetzbMATHGoogle Scholar
  810. [5]
    Singer, I.: Best approximation in normed linear spaces by elements of linear subspaces, Springer, 1970.zbMATHGoogle Scholar
  811. [6]
    Singer, I.: The theory of best approximation and functional analysis, CBMS Regional Conf. Series, 13, SI AM, 1974.CrossRefzbMATHGoogle Scholar
  812. [7]
    Boltyanskiï, V.G. and Yaglom, I.M.: ‘Convex figures and bodies’, in Encycl. Elem. Mathematics, Vol. 5, Moscow, 1966, pp. 181–269 (in Russian)’, Canad. Math. Bull. 18, no. 1 (1975), 35-37.Google Scholar
  813. [9]
    Zalgaller, V.A.: On k-dimensional directions, special for a convex body F in Rn3, Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. 27 (1972), 67–72 (in Russian).MathSciNetzbMATHGoogle Scholar
  814. [A1]
    Deutsch, F.: ‘Existence of best approximations’, J. Approx. Theory 28 (1980), 132–154.MathSciNetCrossRefzbMATHGoogle Scholar
  815. [1]
    Chebyshev, P.L.: Collected works, Vol. 2, Moscow-Leningrad, 1947, pp. 151–238 (in Russian).Google Scholar
  816. [2]
    Bernshtein, S.N.: Extremal properties of polynomials, Leningrad-Moscow, 1937 (in Russian).Google Scholar
  817. [3]
    Mairhuber, J.C.: ‘On Haar;’s theorem concerning Chebyshev approximation problems having unique solutions’, Proc. Amer. Math. Soc. 7, no. 4 (1956), 609–615.MathSciNetzbMATHGoogle Scholar
  818. [4]
    Dzyadyk, V.K.: An introduction to the theory of uniform approximation of functions by polynomials, Moscow, 1977 (in Russian).Google Scholar
  819. [5]
    Karlin, S. and Studden, V.: Tchebycheff systems with applications in analysis and statistics, Interscience, 1966zbMATHGoogle Scholar
  820. [A1]
    Lorentz, G.G.: Approximation of functions, Holt, Rinehart and Winston, 1966, Chapt. 2, Sect. 4.zbMATHGoogle Scholar
  821. [A2]
    Zielke, R.: Discontinuous Čebyšev systems, Springer, 1979.zbMATHGoogle Scholar
  822. [1]
    Chebyshev, P.L.: Collected works, Vol. 2, Moscow-Leningrad, 1947, pp. 151–238 (in Russian).Google Scholar
  823. [2]
    Kolmogorov, A.N.: ‘A remark on the polynomials of Chebyshev deviating the least from a given function’, Uspekhi Mat Nauk 3, no. 1 (1948), 216–221 (in Russian).MathSciNetGoogle Scholar
  824. [3]
    Zukhovitski, S.I. and Stechkin, S.B.: ‘On the approximation of abstract functions with values in a Banach space’, Dokl. Akad Nauk SSSR 106, no. 5 (1956), 773–776 (in Russian).MathSciNetGoogle Scholar
  825. [4]
    Dzyadyk, V.K.: Introduction to the theory of uniform approximation of functions by polynomials, Moscow, 1977 (in Russian).zbMATHGoogle Scholar
  826. [A1]
    Lorentz, G.G.: Approximation of functions, Holt, Rinehart and Winston, 1966, Chapt. 2.zbMATHGoogle Scholar
  827. [1]
    Chebyshev, P.L.: Oeuvres de P.L Tchebycheff 1–2, ChelseaGoogle Scholar
  828. [A1]
    Ivic, A.: The Riemann zeta-function, Wiley, 1985.zbMATHGoogle Scholar
  829. [1]
    Chern, S.S.: ‘Characteristic classes of Hermitian manifolds’, Ann. of Math. 47, no. 1 (1946), 85–121.MathSciNetCrossRefzbMATHGoogle Scholar
  830. [2]
    Stong, R.E.: Notes on cobordism theory, Princeton Univ. Press, 1968.zbMATHGoogle Scholar
  831. [3]
    Palais, R.: Seminar on the Atiyah -Singer index theorem, Princeton Univ. Press, 1965.zbMATHGoogle Scholar
  832. [4]
    Conner, P.E. and Floyd, E.E.: Differentiable periodic maps, Springer, 1964.zbMATHGoogle Scholar
  833. [5A]
    Atiyah, M.F. and Singer, I.M.: ‘The index of elliptic operators I’, Ann. of Math. (2) 87 (1968), 484–530.MathSciNetCrossRefzbMATHGoogle Scholar
  834. [5B]
    Atiyah, M.F. and Segal, G.B.: ‘The index of elliptic operators II’ Ann. of Math. (2) 87 (1968), 531–545.MathSciNetCrossRefzbMATHGoogle Scholar
  835. [5C]
    Atiyah, M.F. and Singer, I.M.: ‘The index of elliptic operators II’, Ann. of Math. (2) 87 (1968), 546–604.MathSciNetCrossRefzbMATHGoogle Scholar
  836. [5C]
    Atiyah, M.F. and Singer, I.M.: ‘The index of elliptic operators III’, Ann of Math. (2) 87 (1968), 546–604.MathSciNetCrossRefzbMATHGoogle Scholar
  837. [5D]
    Atiyah, M.F. and Singer, I.M.: ‘The index of elliptic operators IV’, Ann. of Math. (2) 93 (1971), 119–138.MathSciNetCrossRefzbMATHGoogle Scholar
  838. [5E]
    Atiyah, M.F. and Singer, I.M.: ‘The index of elliptic operators V’, Ann. of Math. (2) 93 (1971), 139–149.MathSciNetCrossRefGoogle Scholar
  839. [6]
    Hirzebruch, F.: Topological methods in algebraic geometry, Springer, 1978 (translated from the German).zbMATHGoogle Scholar
  840. [7]
    Husemoller, D.: Fibre bundles, McGraw-Hill, 1966.zbMATHGoogle Scholar
  841. [8]
    Bukhshtaber, V.M.: ‘The Chern-Dold character in cobordisms’, Math. USSR-Sb. 12, no. 4 (1970), 573–594. (Mat. Sb. 83 (1970), 575-595)CrossRefzbMATHGoogle Scholar
  842. [9]
    Novikov, S.P.: ‘The method of algebraic topology from the viewpoint of cobordism theory’, Math. USSR-Izv. 4, no. 1 (1967), 827–913. (Izv. Akad. SSSR Ser. Mat. 31, no. 4 (1967), 855-951)CrossRefGoogle Scholar
  843. [10]
    Atiyah, M.F.: K-theory: lectures, Benjamin, 1967.Google Scholar
  844. [1]
    Chetaev, N.G.: ‘Sur les équations de Poincaré’, C.R. Acad Sci Paris 185 (1927), 1577–1578.Google Scholar
  845. [2]
    Chetaev, N.G.: ‘Sur les équations de Poincaré’, Dokl. Akad. Nauk SSSR Ser A., no. 7 (1928), 103–104.Google Scholar
  846. [3]
    Chetaev, N.G.: ‘On the equations of Poincaré’, Prikl. Mat. i Mekh. 5, no. 2 (1941), 253–262 (in Russian).zbMATHGoogle Scholar
  847. [1]
    Chetaev, N.G.: ‘A theorem on instability’, Dokl. Akad. Nauk SSSR 1, no. 9 (1934), 529–531 (in Russian).Google Scholar
  848. [3]
    Krasovski, N.N.: Stability of motion. Applications of Lyapunov’s second method to differential systems and equations with delay, Stanford Univ. Press, 1963 (translated from the Russian).Google Scholar
  849. [4]
    Rouche, N., Habets, P. and Laloy, M.: Stability theory by Liapunov’s direct method, Springer, 1977.Google Scholar
  850. [1]
    Chetaev, N.G.: ‘Modification of the Gauss principle’, Prikl. Mat. i Mekh. 5, no. 1 (1941), 11–12 (in Russian).zbMATHGoogle Scholar
  851. [2]
    Rumyantsev, V.V.: ‘On the Chetaev principle’, Dokl. Akad. Nauk SSSR 210, no. 4 (1973), 787–790 (in Russian).MathSciNetGoogle Scholar
  852. [IA]
    Chetaev, N.G.: Stability of motion. Papers on analytical mechanics, Moscow, 1962, pp. 222–224 (in Russian).Google Scholar
  853. [IB]
    Chetaev, N.G.: Stability of motion. Papers on analytical mechanics, Moscow, 1962, pp. 225–238 (in Russian).Google Scholar
  854. [IC]
    Chetaev, N.G.: Stability of motion. Papers on analytical mechanics, Moscow, 1962, p. 232 (in Russian).Google Scholar
  855. [ID]
    Chetaev, N.G.: Stability of motion. Papers on analytical mechanics, Moscow, 1962, pp. 5–152 (in Russian).Google Scholar
  856. [IE]
    Chetaev, N.G.: Stability of motion. Papers on analytical mechanics, Moscow, 1962, pp. 404–406 (in Russian).Google Scholar
  857. [IF]
    Chetaev, N.G.: Stability of motion. Papers on analytical mechanics, Moscow, 1962, pp. 393–403 (in Russian).Google Scholar
  858. [2]
    Krasovski, N.N.: Stability of motion. Applications of Lyapunov’s second method to differential systems and equations with delay, Stanford Univ. Press, 1963 (translated from the Russian).Google Scholar
  859. [3]
    Hahn, W.: Stability of motion, Springer, 1967.zbMATHGoogle Scholar
  860. [1]
    Chevalley, C.: ‘Sur certains groupes simples’, Tohoku Math. J. 7, no. 1-2 (1955), 14–66.MathSciNetCrossRefzbMATHGoogle Scholar
  861. [2]
    Steinberg, R.: Lectures on Chevalley groups, Yale Univ., 1968.zbMATHGoogle Scholar
  862. [3]
    Seminar on algebraic groups and related finite groups, Lecture Notes in Math., 131, Springer, 1970.Google Scholar
  863. [4]
    Humphreys, J.E.: Introduction to Lie algebras and representation theory, Springer, 1972. A.L. OnishchikCrossRefzbMATHGoogle Scholar
  864. [5]
    Humphreys, J.E.: Ordinary and modular representations of Chevalley groups, Springer, 1976.zbMATHGoogle Scholar
  865. [A1]
    Steinberg, R.: ‘Variations on a theme of Chevalley’, Pacific J. Math. 9(1959), 875–891.MathSciNetzbMATHGoogle Scholar
  866. [A2]
    Carter, R.W.: Finite groups of Lie type: conjugacy classes and complex characters, Wiley (Interscience), 1986.Google Scholar
  867. [1]
    Cramér, H.: Mathematical methods of statistics, Princeton Univ. Press, 1946.zbMATHGoogle Scholar
  868. [2]
    Kendall, M.G. and Stuart, A.: The advanced theory of statistics. Distribution theory, 1, Griffin, 1969.Google Scholar
  869. [3]
    Lancaster, H.O.: The chi-squared distribution, Wiley, 1969.zbMATHGoogle Scholar
  870. [4]
    Bol’shev, L.N. and Smirnov, N.V.: Tables of mathematical statistics, Libr. of mathematical tables, 46, Nauka, Moscow, 1983 (in Russian). Processed by L.S. Bark and E.S. Kedova.zbMATHGoogle Scholar
  871. [1]
    Kendall, M.G. and Stewart, A.: The advanced theory of statistics, 2. Inference and relationship, Griffin, 1983.zbMATHGoogle Scholar
  872. [2]
    Chibisov, D.M.: ‘Certain chi-square type tests for continuous distributions’, Theory Probab. Appl. 16, no. 1 (1971), 1–22. (Teor. Veroyatnost. i Primenen. 16, no. 1 (1971), 3–20 )CrossRefzbMATHGoogle Scholar
  873. [3]
    Nikulin, M.S.: ‘Chi-square test for continuous distributions with shift and scale parameters’, Theory Probab. Appl. 18, no$13 (1973), 559–568. (Teor. Veroyatnost. i Primenen. 18, no. 3 (1973), 583–592 )CrossRefzbMATHGoogle Scholar
  874. [4]
    Dzhaparidze, K.O. and Nikulin, M.S.: ‘On a modification of the standard statistics of Pearson’, Theor. Probab. Appl. 19, no. 4 (1974), 851–853. (Teor. Veroyatnost. i Primenen. 19, no. 4 (1974), 886-888)CrossRefzbMATHGoogle Scholar
  875. [5]
    Nikulin, M.S.: ‘On a quantile test’, Theory Probab. Appl. 19, no. 2 (1974), 410–413. (Teor. Veroyatnost. i Primenen., no. 2 (1974), 410-414)CrossRefzbMATHGoogle Scholar
  876. [6]
    Bol’shev, L.N. and Mirvaliev, M.: ‘Chi-square goodness-of- fit test for the Poisson, binomial and negative binomial distributions’, Theory Probab. Appl. 23, no. 3 (1974), 461–474. (Teor. Veroyatnost. i Primenen. 23, no. 3 (1978), 481-494)MathSciNetCrossRefGoogle Scholar
  877. [7]
    Bol’shev, L.N. and Nikulin, M.S.: ‘A certain solution of the homogeneity problem’, Serdica 1 (1975), 104–109 (in Russian).MathSciNetzbMATHGoogle Scholar
  878. [8]
    Greenwood, P.E. and Nikulin, M.S.: ‘Investigations in the theory of probabilities distributions. X’, Zap. Nauchn. Sem. Leningr. Otdel. Mat. Inst. Steklov. 156 (1987), 42–65 (in Russian)’Google Scholar
  879. [1]
    Kostrikin, A.L.: Introduction to algebra, Moscow, 1977 (in Russian).zbMATHGoogle Scholar
  880. [2]
    Lang, S.: Algebra, Addison-Wesley, 1974.Google Scholar
  881. [3]
    Lang, S.: Algebraic numbers, Addison-Wesley, 1964.zbMATHGoogle Scholar
  882. [1]
    Phelps, R.: Lectures on Choquet’s theorem, v. Nostrand, 1966.zbMATHGoogle Scholar
  883. [2]
    Alfsen, E.: Compact convex sets and boundary integrals, Springer, 1971.zbMATHGoogle Scholar
  884. [1]
    Hartshorne, R.: Algebraic geometry, Springer, 1977.zbMATHGoogle Scholar
  885. [2]
    Anneaux de Chow et applications’, in Sem. Chevelley, 1958.Google Scholar
  886. [3]
    Fulton, W.: ‘Rational equivalence on singular varieties’, Publ. Math. IHES 45 (1975), 174–167.Google Scholar
  887. [A1]
    Bloch, S.: Lectures on algebraic cycles, Dept. Math. Duke Univ., 1980.zbMATHGoogle Scholar
  888. [A2]
    Merkur’ev, A.S. and Suslin, A.A.: ‘K-cohomology of Severi — Brauer varieties and norm residue homomorphism’, Math. USSR Izv$121 (1983), 307–340. (Izv. Akad. Nauk SSSR Ser. Mat 46, no. 5 (1982), 1011–1046 )CrossRefGoogle Scholar
  889. [A3]
    Colliot-Théléne, J.-L.: ‘Hilbert’s theorem 90 for K2 with application to the Chow groups of rational surfaces’, Inv. Math. 71 (1983), 1–20.CrossRefzbMATHGoogle Scholar
  890. [A4]
    Fulton, W.: Intersection theory, Springer, 1984.zbMATHGoogle Scholar
  891. [1]
    Chow, W.L.: ‘On compact complex analytic varieties’, Amer. J. Math. 71 (1949), 893–914.MathSciNetCrossRefzbMATHGoogle Scholar
  892. [2]
    Griffiths, P. A. and Harris, J.E.: Principles of algebraic geometry, 1, Wiley, 1978.zbMATHGoogle Scholar
  893. [3]
    Chern, S.S.: Complex manifolds without potential theory, Springer, 1979.zbMATHGoogle Scholar
  894. [1]
    Waerden, B.L. Van Der and Chow, W.L.: ‘Zur algebraische Geometrie IX’, Math. Ann. 113 (1937), 692–704.MathSciNetCrossRefzbMATHGoogle Scholar
  895. [2]
    Harris, J. and Mumford, D.: ‘On the Kodaira dimension of the moduli space of curves’, Invent. Math. 67 (1982), 23–88.MathSciNetCrossRefzbMATHGoogle Scholar
  896. [3]
    Hodge, W.L.V.D. and Pedoe, D.: Methods of algebraic geometry, 2, Cambridge Univ. Press.Google Scholar
  897. [4]
    Shafarevich, I.R.: Basic algebraic geometry, Springer, 1977 (translated from the Russian).zbMATHGoogle Scholar
  898. [A1]
    Angéniol, B.: Familles de cycles algébriques. Schéma de Chow, Lecture Notes in Math., 896, Springer, 1981.Google Scholar
  899. [1]
    Chebyshev, P.L.: Complete collected works, Vol. 2, Moscow, 1947, pp. 103–106 (in Russian).Google Scholar
  900. [2]
    Christoffel, E.B.: ‘Ueber die Gausssche Quadratur und eine Verallgemeinerung derselben’, J. Reine Angew. Math. 55 (1858), 61–82.CrossRefzbMATHGoogle Scholar
  901. [3A]
    Darboux, G.: ‘Mémoire sur l’approximation des fonctions de très-grands nombres, et sur une classe étendue de développements en série’, J. Math. Pures Appl (3) 4 (1878), 5– 56.Google Scholar
  902. [3B]
    Darboux, G.: ‘Sur l’approximation des fonctions de très- grands nombres, et sur une classe étendue de développements en série’, J. Math. Pures Appl (3) 4 (1878), 377–416.Google Scholar
  903. [1]
    Christoffel, E.B.: ‘Ueber die Gaussche Quadratur und eine Verallgemeinerung derselben’, J. Reine Angew. Math. 55 (1858), 61–82.CrossRefzbMATHGoogle Scholar
  904. [2]
    Szegö, G.: Orthogonal polynomials, Amer. Math. Soc., 1975.Google Scholar
  905. [3]
    Natanson, I.P.: Constructive function theory, 1–3, F. Ungar, 1964-1965 (translated from the Russian).Google Scholar
  906. [A1]
    Hildebrand, F.B.: Introduction to numerical analysis, McGraw-Hill, 1974.zbMATHGoogle Scholar
  907. [IA]
    Christoffel, E.B.: Ann. di Math. PuraAppl . ( 2 ) 1 (1868), 89–103.Google Scholar
  908. [IB]
    Christoffel, E.B.: Ann. di Math. Pura Appl (2) 4 (1871), 1–9.Google Scholar
  909. [2]
    Schwarz, H.A.: Gesammelte mathematische Abhandlungen, 1–2, Springer, 1890.zbMATHGoogle Scholar
  910. [3]
    Lavrent’ev, M.A. and Shabat, B.V.: Methoden der komplexen Funktionentheorie, Deutsch. Verlag Wissenschaft., 1967 (translated from the Russian).Google Scholar
  911. [4]
    Kantorovich, L.V. and Krylov, V.I.: Approximate methods of higher analysis, Noordhoff, 1958 (translated from the Russian).zbMATHGoogle Scholar
  912. [5]
    Koppenfels, W. and Stalman, F.: Praxis der konformen Abbildung, Springer, 1959.zbMATHGoogle Scholar
  913. [6]
    Akhiezer, N.I.: Elements of the theory of elliptic functions, Moscow, 1970 (in Russian).Google Scholar
  914. [7]
    Maksimov, Yu.D.: ‘Extension of the structural formula for convex univalent functions to a multiply connected circular region’, Soviet Math. Dokl 2, 55–58. (Dokl. Akad. Nauk SSSR 136, no. 2 (1961), 284-287MathSciNetzbMATHGoogle Scholar
  915. [A1]
    Ahlfors, L.: Complex analysis, McGraw-Hill, 1979, Chapt. 6, Sect. 2.zbMATHGoogle Scholar
  916. [A2]
    Hille, E.: Analytic function theory, 2, Chelsea, reprint, 1977.Google Scholar
  917. [A3]
    Nehari, Z.: Conformai mapping, Dover, reprint, 1975.Google Scholar
  918. [A1]
    Kobayashi, S. and Nomizu, K.: Foundations of differential geometry, 1, Interscience, 1963, Chapt. 4.zbMATHGoogle Scholar
  919. [A2]
    Millman, R.S. and Parker, G.D.: Elements of differential geometry, Prentice Hall, 1977, Chapt. 7zbMATHGoogle Scholar
  920. [1]
    Church, A.: The calculi of λ-convention, Princeton Univ. Press, 1941.Google Scholar
  921. [2]
    Curry, H.B.: Foundations of mathematical logic, McGraw-Hill, 1963.zbMATHGoogle Scholar
  922. [A1]
    Barendregt, H.P.: The lambda calculus, its syntax and semantics, North-Holland, 1978.Google Scholar
  923. [1]
    Kleene, S.C.: Introduction to metamathematics, North-Holland, 1951.Google Scholar
  924. [2]
    Rogers, Jr., H.: Theory of recursive functions and effective computability, McGraw-Hill, 1967.zbMATHGoogle Scholar
  925. [A1]
    Barendregt, H.P.: The lambda-calculus, its syntax and semantics, North-Holland, 1978.Google Scholar
  926. [A1]
    Boyer, C.B.: A history of mathematics, Wiley, 1968.zbMATHGoogle Scholar
  927. [1]
    Enzyklopädie der Elementarmathematik, Deutsch. Verlag Wissenschaft., 1969 (translated from the Russian).Google Scholar
  928. [2]
    Burago, Yu.D. and Stratilatova, M.B.: Circumferences on a surface’, Proc. Steklov. Inst. Math. 76 (1967), 109–141. (Trudy Mat. Inst. Steklov. 76 (1965), 88-114)Google Scholar
  929. [A1]
    Berger, M.: Geometry, 1, Springer, 1987 (translated from the French).Google Scholar
  930. [A2]
    Burago, Yu.D. and Zalgaller, V.A.: Geometric inequalities, Springer, 1988.zbMATHGoogle Scholar
  931. [A3]
    Coolidge, J.: A treatise on the circle and the sphere, Oxford Univ. Pres, 1916.zbMATHGoogle Scholar
  932. [1]
    Vinogradov, I.M.: The method of trigonometric sums in the theory of numbers, Interscience, 1954 (translated from the Russian).Google Scholar
  933. [2]
    Hua, L.K.: ‘The method of trigonometric sums and its applications to number theory’, in Selected papers, Springer, 1983, pp. 124–135 (translated from the German).Google Scholar
  934. [3]
    Karatsuba, A.A.: Fundamentals of analytic number theory, Moscow, 1975 (in Russian).Google Scholar
  935. [A1]
    Vaughan, R.C.: The Hardy-Littlewood method, Cambridge Univ. Press, 1981.zbMATHGoogle Scholar
  936. [1]
    Gauss, C.F.: Werke, Vol. 2, Göttingen, 1863, pp. 269–291.zbMATHGoogle Scholar
  937. [2]
    Sierpiński, W.: Prace Mat. Fiz. 17 (1906), 77–118.Google Scholar
  938. [3]
    Vorono, G.F.: Collected Works, Vol. 1 Kiev, 1952, p. 5 (in Russian).Google Scholar
  939. [4]
    Hua, L.K.: ‘The method of trigonometric sums and its applications to number theory’, in Selected Papers, Springer, 1983, pp. 124–135 (translated from German).Google Scholar
  940. [5]
    Vinogradov, I.M: ‘On the number of integer points in a ball’, Izv. Akad. Nauk SSSR Ser. Mat. 27, no. 5 (1963), 957–968 (in Russian).MathSciNetzbMATHGoogle Scholar
  941. [6]
    Vinogradov, I.M: Basic variants of the method of trigonometric sums, Moscow, 1976 (in Russian).Google Scholar
  942. [7]
    Novák, B.: ‘Lattice points in more-dimensional ellipsoids’ Trudy Mat. Inst. Akad. Nauk SSSR 132 (1973), 145–150.Google Scholar
  943. [A1]
    Chen, J. ‘The lattice-points in a circle’, Sci. Sinica 12 (1963), 633–649.MathSciNetGoogle Scholar
  944. [2]
    Walfisz, A.: Gitterpunkte in mehrdimensionate Kugeln, PWN, 1957.Google Scholar
  945. [1]
    Enzyklopädie der Elementarmathematik, 4, Deutsch. Verlag Wissenschaft., 1969 (translated from the Russian).Google Scholar
  946. [1]
    Pólya, G. and Szegö, G.: Isoperimetric inequalities in mathematical physics, Princeton Univ. Press, 1951.zbMATHGoogle Scholar
  947. [2]
    Hayman, V.K.: Multivalent functions, Cambridge Univ. Press., 1958.zbMATHGoogle Scholar
  948. [3]
    Jenkins, J. J.: Univalent functions and conformai mappings, Springer, 1958.Google Scholar
  949. [1]
    Savelov, A.A.: Plane curves, Moscow, 1960 (in Russian).Google Scholar
  950. [2]
    Smogorzhevski, A.S. and Stolova, E.S.: Handbook on the theory of plane curves of the third order, Moscow, 1961 (in Russian)Google Scholar
  951. [A1]
    Lawrence, J.D.: A catalog of special plane curves, Dover, reprint, 1972.zbMATHGoogle Scholar
  952. [A2]
    Brieskorn, E. and Knörrer, H.: Ebene algebraische Kurven, Birkhäuser, 1981.Google Scholar
  953. [1]
    Clairaut, A.: Histoire Acad R. Sci Paris (1734) (1736), 196–215.Google Scholar
  954. [2]
    Stepanov, V.V.: A course of differential equations, Moscow, 1959 (in Russian).Google Scholar
  955. [3]
    Kamke, E.: Differentialgeleichungen. Losungsmethoden und Losungen, 2. Partielle Differentialgleichungen ler Ordnung fur eine gesuchte Funktion, Akad. Verlagsgesell., Leipzig, 1944.Google Scholar
  956. [A1]
    Ince, E.L.: Ordinary differential equations, Dover, reprint, 1956.Google Scholar
  957. [1]
    Cohen, P.J.: Set theory and the continuum hypothesis, Benjamin, 1966.zbMATHGoogle Scholar
  958. [2]
    Fraenkel, A. A. and Bar-Hillel, Y.: Foundations of set theory, North-Holland, 1958.zbMATHGoogle Scholar
  959. [1]
    Eisenhart, L.P.: Riemannian geometry, Princeton Univ. Press, 1949.zbMATHGoogle Scholar
  960. [2]
    Moore, J.D.: ‘Isometric immersions of space forms in space forms’, Pacific J. Math. 40 (1972), 157–166.MathSciNetzbMATHGoogle Scholar
  961. [3]
    Borisenko, A.A.: ‘The class of Riemannian spaces of strictly negative curvature’, Ukrain. Geom. Sb. 13 (1973), 15–18 (in Russian).MathSciNetzbMATHGoogle Scholar
  962. [4A]
    Rozenson, N.A.: ‘On Riemannian spaces of class I. II’, Izv. Akad Nauk SSSR Ser. Mat. 4 (1940), 181–192 (in Russian). French summary.zbMATHGoogle Scholar
  963. [4B]
    Rozenson, N.A.: ‘On Riemannian spaces of class I. II’, Izv. Akad Nauk SSSR Ser. Mat. 5 (1941), 325–352 (in Russian). French summary.Google Scholar
  964. [4C]
    Rozenson, N.A.: ‘On Riemannian spaces of class I. III’, Izv. Akad Nauk SSSR Ser. Mat. 7 (1943), 253–284 (in Russian). French summary.Google Scholar
  965. [5]
    Moore, J.D.: ‘Isometric immersions of Riemannian products’, J. Differential Geom. 5, no. 1-2 (1971), 159–168.zbMATHGoogle Scholar
  966. [6]
    Pogorelov, A.V.: ‘An example of a two-dimensional Riemannian metric that does not admit a local realization in E3’, Dokl. Akad. Nauk SSSR 198, no. 1 (1971), 42–43 (in Russian).MathSciNetGoogle Scholar
  967. [7]
    Poznyak, E.G.: ‘Isometric imbedding of two-dimensional Riemannian metrics in Euclidean space’, Uspekhi Mat. Nauk 28, no. 4 (172) (1973), 47–76 (in Russian).MathSciNetGoogle Scholar
  968. [8]
    Friedman, A.: ‘Isometric embedding of Riemannian manifolds into Euclidean space’, Rev. Modern Physics 37 (1965), 201–203.CrossRefzbMATHGoogle Scholar
  969. [9]
    Borisenko, A.A.: ‘Isometric immersion of pseudo-Riemannian spaces of constant curvature’, Ukrain. Geom. Sb. 19 (1976), 11–18 (in Russian).MathSciNetzbMATHGoogle Scholar
  970. [10]
    Jacobowitz, H.: ‘Extending isometric embeddings’, J. Differential Geom. 9, no. 2 (1974), 291–307.MathSciNetzbMATHGoogle Scholar
  971. [A1]
    Spivak, M.: A comprehensive introduction to differential geometry, 5, Publish or Perish, 1976.Google Scholar
  972. [A2]
    Kobayashi, S. and Nomizu, K.: Foundations of differential geometry, 1–2, Interscience, 1963-1969.zbMATHGoogle Scholar
  973. [1]
    Cassels, J.W.S. and Fröhlich, A. (eds.): Algebraic number theory, Acad. Press, 1967, Chapt. VI.zbMATHGoogle Scholar
  974. [2]
    Weil, A.: Basic number theory, Springer, 1973.zbMATHGoogle Scholar
  975. [3]
    Koch, H.: Galoissche Theorie der p-Erweiterungen, Deutsch. Verlag Wissenschaft., 1970.zbMATHGoogle Scholar
  976. [4]
    Kuz’min, L.V.: ‘Homotopy of profinite groups, the Schur multiplicator and class field theory’, Izv. Akad. Nauk SSSR Ser. Mat. 33, no. 6 (1969), 1220–1254 (in Russian).MathSciNetzbMATHGoogle Scholar
  977. [A1]
    Iwasawa, K.: Local class field theory, Oxford Univ. Press, 1986.Google Scholar
  978. [A2]
    Neukirch, J.: Class field theory, Springer, 1986.Google Scholar
  979. [A3]
    Takagi, T.: ‘Ueber eine Theorie des relativ-abelschen Zahlkorpers’, J. Coll. Sci. Imp. Univ. Tokyo 41 (1920), 1–132.Google Scholar
  980. [A4]
    Lubin, J. and Tate, J.: ‘Formal complex multiplication in local fields’, Ann. of Math. 81 (1965), 380–387.MathSciNetCrossRefzbMATHGoogle Scholar
  981. [A5]
    Hazewinkel, M.: ‘Local class field theory is easy’, Adv. in Math. 18 (1975), 148–181.MathSciNetCrossRefzbMATHGoogle Scholar
  982. [1]
    Duboshin, G.N.: Celestial mechanics, Moscow, 1968 (in Russian).Google Scholar
  983. [2]
    Handbook of celestial mechanics and astronomy, Moscow, 1971 (inRussian).Google Scholar
  984. [A1]
    Poincaré, H.: ‘Sur les problèmes des trois corps et les équations de la dynamique’, Acta Math. 13 (1890), 1–270.zbMATHGoogle Scholar
  985. [A2]
    Arnol’d, V.L.: Mathematical methods of classical mechanics, Springer, 1978 (translated from the Russian).Google Scholar
  986. [A3]
    Rüssmann, H.: ‘Konvergente Reihenentwicklungen der Störungstheorie der Himmelmechanik’, in K. Jacobs (ed.): Selecta Mathematica, Vol. 5, Springer, 1979.Google Scholar
  987. [1]
    Postnikov, M.M.: Magic squares, Moscow, 1964 (in Russian).Google Scholar
  988. [2]
    Hall, M.: Combinatorial theory, Blaisdell, 1967.zbMATHGoogle Scholar
  989. [3]
    Ore, O.: Theory of graphs, Amer. Math. Soc., 1962.zbMATHGoogle Scholar
  990. [4]
    Riordan, J.: An introduction to combinational analysis, Wiley, 1958.Google Scholar
  991. [5]
    Harary, F.: Graph theory, Addison-Wesley, 1969.Google Scholar
  992. [A1]
    Ruser, H.J.: Combinatorial mathematics, Carus Math. Monogr., 14, Math. Assoc. Amer., 1963.Google Scholar
  993. [1]
    Artin, E: Geometric algebra, Interscience, 1957.zbMATHGoogle Scholar
  994. [2]
    Dieudonne, J.A.: La géométrie des groups classiques, Springer, 1955.Google Scholar
  995. [3]
    Borel, A. and Mostow, G.D. (eds.): Algebraic groups and discontinuous subgroups, Proc. Symp. Pure Math., 9, Amer. Math. Soc., 1966.Google Scholar
  996. [4]
    Bourbaki, N.: Elements of mathematics. Algebra: Modules. Rings. Forms, 2, Addison-Wesley, 1975, Chapt. 4; 5; 6 (translated from the French).Google Scholar
  997. [A1]
    Borel, A. and Tits, J.: ‘Homomorphisms ‘abstraits’ de-groupes algébriques simples’, Ann. of Math. (2) 97 (1973), 499–571.MathSciNetCrossRefzbMATHGoogle Scholar
  998. [A2]
    O’Meara, O.T.: ‘A survey of the isomorphism theory of the classical groups’, in Ring theory and algebra, Vol. 3, M. Dekker, 1980, pp. 225–242.Google Scholar
  999. [A3]
    Weil, A.: ‘Algebras with involutions and the classical groups’, J. Ind. Math. Soc. 24 (1960), 589–623.MathSciNetGoogle Scholar
  1000. [1]
    Geronimus, Ya.L.: The theory of orthogonal polynomials, Moscow-Leningrad, 1950 (in Russian).Google Scholar
  1001. [2]
    Bateman, H. and Erdélyi, A.: Higher transcendental functions. Bessel functions, 2, McGraw-Hill, 1953.Google Scholar
  1002. [3]
    Jackson, D.: Fourier series and orthogonal polynomials, Carus Math. Monogr., 6, Math. Assoc. Amer., 1971.Google Scholar
  1003. [4]
    Nikiforov, A.F. and Uvarov, V.B.: Fundamentals of the theory of special functions, Moscow, 1974 (in Russian).Google Scholar
  1004. [5]
    Suetin, P.K.: Classical orthogonal polynomials, Moscow, 1978 (in Russian).Google Scholar
  1005. [A1]
    Andrews, G.E. and Askey, R.. ‘Classical orthogonal polynomials’, in C. Brezinski, A. Draux, A.P. Magnus, P. Maroni and A. Ronveaux (eds.): Polynbmes Orthogonaux et Applications, Lecture Notes in Math., Vol. 1171, Springer, 1985, pp. 36–62.Google Scholar
  1006. [A2]
    Askey, R.: Orthogonal polynomials and special functions, Reg. Conf. Ser. Appl. Math., 21, Soc. Industrial Appl. Math., 1975.Google Scholar
  1007. [A3]
    Askey, R. and Wilson, J.: Some basic hypergeometric orthogonal polynomials that generalize Jacobi polynomials, Amer. Math. Soc., 1985.Google Scholar
  1008. [A4]
    Chihara, T.S.: An introduction to orthogonal polynomials, Gordon and Breach, 1978.zbMATHGoogle Scholar
  1009. [A5]
    Szego, G.: Orthogonal polynomials, Amer. Math. Soc., 1975Google Scholar
  1010. [1]
    Husemoller, D.: Fibre bundles, McGraw-Hill, 1966.zbMATHGoogle Scholar
  1011. [2]
    Boardman, J.M. and Vogt, R.M.: Homotopy invariant algebraic structures on topological spaces, Springer, 1973.zbMATHGoogle Scholar
  1012. [A1]
    Milnor, J.W. and Stasheff, J.D.: Characteristic classes, Princeton Univ. Press, 1974.zbMATHGoogle Scholar
  1013. [A2]
    Madsen, J. and Milgram, R.J.: The classifying spaces for surgery and cobordism of manifolds, Princeton Univ. Press, 1979.zbMATHGoogle Scholar
  1014. [1]
    Clebsch, R.F.A.: J. fur Math. 55 (1858), 254.zbMATHGoogle Scholar
  1015. [2]
    Bliss, G.A.: Lectures on the calculus of variations, Chicago Univ. Press, 1947.zbMATHGoogle Scholar
  1016. [1]
    Bourbaki, N.: Elements of mathematics, Addison-Wesley, 1966–1977 (translated from the French).Google Scholar
  1017. [2]
    Dieudonne, J.A.: La géométrie des groups classiques, Springer, 1955.Google Scholar
  1018. [3]
    Kjrillov, A. A.: Elements of the theory of representations, Springer, 1976 (translated from the Russian).Google Scholar
  1019. [4]
    Cartan, E.: Leçons sur la théorie des spineurs, Hermann, 1938.Google Scholar
  1020. [A1]
    Chevalley, C.: The algebraic theory of spinors, Columbia Univ. Press, 1954.Google Scholar
  1021. [A2]
    O’Meara, O.T.: Introduction to quadratic forms, Springer, 1973.Google Scholar
  1022. [A3]
    Chevalley, C.: The construction and study of certain important algebras, Math. Soc, of Japan, 1955, Chapt. III.Google Scholar
  1023. [1]
    Bogomolov, S.A.: An introduction to Riemann’s non-Euclidean geometry, Leningrad-Moscow, 1934 (in Russian).Google Scholar
  1024. [2]
    Rozenfel’d, B.A.: Non-Euclidean spaces, Moscow, 1969 (in Russian).Google Scholar
  1025. [A1]
    Klein, F.: Vorlesungen über nichteuklidische Geometrie, Springer, 1928.Google Scholar
  1026. [A2]
    Berger, M.: Geometry, II, Springer, 1987.Google Scholar
  1027. [1]
    Clifford, A.H.: ‘Semigroups admitting relative inverses’, Ann. of Math. 42, no. 4 (1941), 1037–1049.MathSciNetCrossRefzbMATHGoogle Scholar
  1028. [2]
    Clifford, A.H.: ‘A structure theorem for orthogroups’, J. Pure Appl. Algebra 8, no. 1 (1976), 23–50.MathSciNetCrossRefzbMATHGoogle Scholar
  1029. [3]
    Clifford, A.H. and Preston, G.B.: The algebraic theory of semigroups, 1–2, Amer. Math. Soc., 1961–1967.Google Scholar
  1030. [4]
    Lyapin, E.S.: Semigroups, Amer. Math. Sex;., 1974 (translated from the Russian).zbMATHGoogle Scholar
  1031. [5]
    Petrich, M.: ‘The structure of completely regular semigroups’, Trans. Amer. Math. Soc. 189 (1974), 211–236.MathSciNetCrossRefzbMATHGoogle Scholar
  1032. [A1]
    Petrich, M.: Inverse semigroups, Wiley, 1984.zbMATHGoogle Scholar
  1033. [A2]
    Pollak, G., Schwartz, ST. and Steinfeld, O. (eds.): Semigroups, Coll. Math. Soc. J. Bolyai, 39, North-Holland, 1985.Google Scholar
  1034. [1]
    Walker, R.J.: Algebraic curves, Springer, 1978.CrossRefzbMATHGoogle Scholar
  1035. [2]
    Chebotarev, N.G.: The theory of algebraic functions, Moscow-Leningrad, 1948 (in Russian).Google Scholar
  1036. [3]
    Shafarevich, I.R.: Basic algebraic geometry, Springer, 1977 (translated from the Russian).zbMATHGoogle Scholar
  1037. [4]
    Hartshorne, R.: Algebraic geometry, Springer, 1977.zbMATHGoogle Scholar
  1038. [A1]
    Griffiths, P.A. and Harris, J.E.: Principles of algebraic geometry, Wiley, 1978.zbMATHGoogle Scholar
  1039. [A2]
    Arbarello, E., Carnalba, M., Harris, J.E. and Griffiths, P.A.: Geometry of algebraic curves, 1, Springer, 1985.Google Scholar
  1040. [A1]
    Cohn, P.M.: Universal algebra, Reidel, 1981.CrossRefzbMATHGoogle Scholar
  1041. [1]
    Bunge, M.: Matematika 16, no. 2 (1972), 11–46Google Scholar
  1042. [2]
    Lawvere, F.W.: ‘Introduction’, in Toposes, algebraic topology and logic, Springer, 1972.CrossRefGoogle Scholar
  1043. [3]
    Dubuc, E.J.: Kan extensions in enriched category theory, Springer, 1970.zbMATHGoogle Scholar
  1044. [A1]
    MacLane, S.: Categories for the working mathematician, Springer, 1971, Chapt. IV, Sect. 6; Chapt. VII, Sect. 7.Google Scholar
  1045. [1]
    Busemann, H.: The geometry of geodesies, Acad. Press, 1955.Google Scholar
  1046. [2]
    Hadamard, J.: ‘Les surfaces à courbures opposées et leurs lignes géodésique’, J. Math. Pure Appl. 4 (1898), 27–75.Google Scholar
  1047. [3]
    Poincaré, H.: ‘Sur les lignes géodésiques des surfaces convexes’, Trans. Amer. Math. Soc. 6 (1904), 237–274.CrossRefGoogle Scholar
  1048. [4]
    Birkhoff, G.D.: ‘Dynamical systems with two degrees of freedom’, Trans. Amer. Math. Soc. 18 (1917), 199–300.MathSciNetCrossRefzbMATHGoogle Scholar
  1049. [5]
    Anosov, D.V.: ‘Geodesic flows on closed Riemannian manifolds with negative curvature’, Proc. Steklov. Inst. Math. 90 (1969), 235 (translated from the Russian).Google Scholar
  1050. [6]
    Weinstein, A.D.: ‘Sur la non-densité des géodésiques fermées’, C.R. Acad. Sci. Paris Ser. A 271 (1970), 504.MathSciNetzbMATHGoogle Scholar
  1051. [7]
    Sinai, Ya.G.: ‘Asymptotic behaviour of closed geodesies on compact manifolds with negative curvature’, Izv. Akad Nauk SSSR Ser. Mat. 30, no. 6 (1966), 1275–1296 (in Russian).MathSciNetzbMATHGoogle Scholar
  1052. [8]
    Gryuntal’, A.I.: ‘On closed self-intersecting geodesies on surfaces close to a sphere’, Uspekhi Mat. Nauk 32, no. 4 (1977), 244–245 (in Russian).Google Scholar
  1053. [9]
    Gryuntal’, A.I.: ‘The existence of a metric on the two- dimensional sphere all closed self-intersecting geodesies of which are hyperbolic’, Uspekhi Mat. Nauk 32, no. 5 (1977), 166 (in Russian).Google Scholar
  1054. [10]
    Lyusternik, L.A. and Shnirel’Man, L.G.: ‘Topological methods in variational problems and their applications to the differential geometry of surfaces’, Uspekhi Mat. Nauk 2, no. 1 (1947), 166–217 (in Russian).Google Scholar
  1055. [11]
    Abraham, R.: ‘Bumpy metrics’, in Global Analysis, Proc. Symp. Pure Math., Vol. 14, Amer. Math. Soc., 1970, pp. 1–3.Google Scholar
  1056. [12]
    Klingenberg, W. and Takens, F.: ‘Generic properties of geodesic flows’, Math. Ann. 197, no. 4 (1972), 323–334.MathSciNetCrossRefzbMATHGoogle Scholar
  1057. [13]
    Klingenberg, W.: ‘Existence of infinitely many closed geodesies’, J. Diff Geom. 11 (1976), 299–308.MathSciNetzbMATHGoogle Scholar
  1058. [14]
    ZOll, O.: ‘Ueber Flächen mit Scharen geschlossener geodetischer Linien’, Math. Ann. 57 (1903), 108–133.Google Scholar
  1059. [15]
    Klingenberg, W.: Lectures on closed geodesies, Springer, 1978.CrossRefGoogle Scholar
  1060. [16]
    Anosov, D.V.: ‘On generic properties of closed geodesies’, Math. USSR-Izv. 21, no$11 (1983), 1–29. (Izv. Akad Nauk SSSR Ser. Mat. 46, no. 4 (1982), 675–709 )MathSciNetzbMATHGoogle Scholar
  1061. [A1]
    Lyusternik, L.A. and Fet, A.I.: ‘Variational problems on closed manifolds’, Dokl. Akad. Nauk. SSSR 81 (1951), 17–18 (in Russian).MathSciNetzbMATHGoogle Scholar
  1062. [A2]
    Gromoll, D. and Meyer, W.: ‘Periodic geodesies on compact Riemannian manifolds’, J. Diff. Geom. 8 (1973), 207–223.Google Scholar
  1063. [1]
    Rudin, W.: Functional analysis, McGraw-Hill, 1979.Google Scholar
  1064. [2]
    Robertson, A.P. and Robertson, W.: Topological vector spaces, Cambridge Univ. Press, 1964.zbMATHGoogle Scholar
  1065. [1]
    Arkhangel’skii, A.V.: ‘Mappings and spaces’, Russian Math. Surveys 21, no$14 (1966), 115–126. (Uspekhi Mat. Nauk 21, no. 4 (1966), 133–184 )Google Scholar
  1066. [2]
    Arkhangel’skii, A.V. and Ponomarev, V.I.: Fundamentals of general topology: problems and exercises, Reidel, 1984 (translated from the Russian).Google Scholar
  1067. [3]
    Engelking, R.: General topology, PWN, 1977.zbMATHGoogle Scholar
  1068. [1]
    Yosida, K.: Functional analysis, Springer, 1980.zbMATHGoogle Scholar
  1069. [2]
    Kato, T.: Perturbation theory for linear operators, SpringerGoogle Scholar
  1070. [A1]
    Goldberg, S.: Unbounded linear operators, McGraw-Hill, 1966.zbMATHGoogle Scholar
  1071. [1]
    Kuratowski, K.: Topology, 1, Acad. Press, 1966 (translated from the French).Google Scholar
  1072. [A1]
    Hartshorne, R.: Algebraic geometry, Springer, 1977.zbMATHGoogle Scholar
  1073. [1]
    Kaczmarz, S. and Steinhaus, H.: Theorie der Orthogonalreihen, Chelsea, reprint, 1951.zbMATHGoogle Scholar
  1074. [2]
    Geronimus, Ya.L.: Theory of orthogonal polynomials. A survey of the achievements in Soviet mathematics, Moscow-Leningrad, 1950 (in Russian).Google Scholar
  1075. [3]
    Szego, G.: Orthogonal polynomials, Amer. Math. Soc., 1975.Google Scholar
  1076. [4A]
    Steklov, V.A.: Zap. Akad Nauk Ser. Fiz.-Mat. 30, no. 4 (1911), 1–86.Google Scholar
  1077. [4B]
    Steklov, V.A.: Zap. Akad Nauk Ser. Fiz.-Mat. 33, no. 8 (1914), 1–59.Google Scholar
  1078. [5]
    Steklov, V.A.: Fundamental problems of mathematical physics, 1–2, St. Petersburg, 1922–1923 (in Russian).Google Scholar
  1079. [6]
    Riesz, M.: ‘Sur le problème des moments et le théorème de Parseval correspondant’, Acta Szeged Sect. Math. 1 (1923), 209–225. (Acta Litterarum ac Scientiarum Regiae Universitatis Hungaricae Francisco-Josephine, Sect. Sci. Math. 1 (1922–1923), 209–225)Google Scholar
  1080. [7]
    Hewitt, E.: ‘Remark on orthonormal sets in L2(a, b)’ Amer. Math. Monthly 61 (1954), 249–250.MathSciNetCrossRefzbMATHGoogle Scholar
  1081. [A1]
    Geronimus, Ya.L.: Polynomials orthogonal on circle and interval, Pergamon, 1960 (translated from the Rus-sian).Google Scholar
  1082. [A2]
    Alexits, G.: Convergence problems of orthogonal series, Pergamon, 1961.zbMATHGoogle Scholar
  1083. [A3]
    Freud, G.: Orthogonal polynomials, Pergamon, 1971Google Scholar
  1084. [1]
    Blaschke, W.: Einfuhrung in die Geometrie der Waben, Birkhauser, 1955.Google Scholar
  1085. [2]
    Belousov, V.D. and Ryzhkov, V.V.: ‘Geometry of webs’, J. Soviet Math. 2 (1974), 331–348. (Itogi Nauk. i Tekhn. Alg. Topol Geom 10 (1972), 159–188 )Google Scholar
  1086. [3]
    Belousov, V.D.: Algebraic nets and quasi-groups, Stiintsa, Kishinev, 1971 (in Russian).Google Scholar
  1087. [1]
    Sobolev, S.L.: ‘Some remarks on the numerical solution of integral equations’, Izv. Akad Nauk SSSR Ser. Mat. 20, no. 4 (1956), 413–436 (in Russian).MathSciNetzbMATHGoogle Scholar
  1088. [2]
    Babuska, I. [I. Babushka], Prager, M. and Vitasek, E.: ‘Closure of computational processes and the double-sweep method’, Zh. Vychisl. Mat. i Mat. Fiz. 4, no. 2 (1964), 351–353 (in Russian).Google Scholar
  1089. [3]
    Bakhalov, N.S.: Computational methods for the solution of ordinary differential equations, Kiev, 1970 (in Russian).Google Scholar
  1090. [4]
    Bakhvalov, N.S.: Numerical methods: analysis, algebra, ord-nary differential equations, Mir, 1977 (translated from the Russian).Google Scholar
  1091. [5]
    Saul’ev, V.K.: Integration of equations of parabolic type by the difference method, Moscow, 1960 (in Russian).Google Scholar
  1092. [6]
    Shapkin, A.F.: ‘Closure of two computational algorithms, based on the idea of orthogonalization’, Zh. Vychisl. Mat. i Mat. Fiz. 7, no. 2 (1967), 411–416 (in Russian)Google Scholar
  1093. [A1]
    Babuška, I. [I. Babushka], Práger, M. and Vitásek, E.: Numerical processes in differential equations, Wiley, 1966Google Scholar
  1094. [A1]
    Kuratowski, K.: Topology, 1 Acad. Press, 1966 (translated from the French).Google Scholar
  1095. [1]
    Cohn, P.M.: Universal algebra, Reidel, 1981.CrossRefzbMATHGoogle Scholar
  1096. [2]
    Kurosh, A.G.: Lectures on general algebra, Chelsea, 1963 (translated from the Russian).Google Scholar
  1097. [A1]
    Kuratowski, G: ‘Sur l’opération Ā de I’analysis situs’, Fund. Math. 3 (1922), 182–199.zbMATHGoogle Scholar
  1098. [A2]
    McKinsey, J.C.C. and Tarski, A.: ‘On closed elements in closure algebras’, Ann. Math. (2)47 (1946), 122–162.MathSciNetCrossRefzbMATHGoogle Scholar
  1099. [1]
    Painlevé, P.: Leçons sur le théorie analytique des équations différentielles, Paris, 1897.Google Scholar
  1100. [2]
    Zoretti, B.: Leçons sur le prolongement analytique, Paris, 1911.zbMATHGoogle Scholar
  1101. [3]
    Golubev, V.V.: Univalent analytic functions. Automorphic functions, Moscow, 1961 (in Russian).Google Scholar
  1102. [4]
    Priwalow, I.I. [I.I. Privalov]: Randeigenschaften analytischer Funktionen, Deutsch. Verlag Wissenschaft., 1956 (translated from the Russian).zbMATHGoogle Scholar
  1103. [5]
    Noshiro, K.: Cluster sets, Springer, 1960.zbMATHGoogle Scholar
  1104. [6]
    Collingwood, E.F. and Lohwater, A.J.: The theory of cluster sets, Cambridge Univ. Press, 1966.CrossRefzbMATHGoogle Scholar
  1105. [7]
    MacLane, G.R.: Asymptotic values of holomorphic functions, Rice Univ. Studies, Math. Monographs, 49, Rice Univ., Houston, 1963.Google Scholar
  1106. [8]
    Markushevich, A.I., Tumarkin, G.Ts. and Khavinson, S.Ya.: Studies on comtemporary problems in the theory of functions of a complex variable, Moscow, 1961, pp. 100–110 (in Russian).Google Scholar
  1107. [9]
    Lohwater, A.: ‘The boundary behaviour of analytic functions’, Itogi Nauk. Mat. Anal. 10 (1973), 99–259 (in Russian).MathSciNetGoogle Scholar
  1108. [10]
    Dolzhenko, E.P.: ‘Boundary properties of arbitraiy functions’, Izv. Akad Nauk SSSR Ser. Mat. 31, no. 1 (1967), 3–14 (in Russian).MathSciNetzbMATHGoogle Scholar
  1109. [11]
    Dolzhenko, E.P.: ‘The metric properties of singular sets of holomorphic functions of several variables’, Ann. of Math. 2 (1976), 191–201 (in Russian). English summary.Google Scholar
  1110. [12]
    Gavrilov, V.I.: ‘Behavior of holomorphic functions along a chord in the unit disk’, Soviet Math. Dokl. 15, no$13 (1974), 725–728. (Dokl. Akad Nauk SSSR 216, no. 1 (1974), 21–23 )MathSciNetGoogle Scholar
  1111. [13]
    Kanatnikov, A.N. and Gavrilov, V.I.: ‘Characterization of the set M(f) for meromorphic functions’, Soviet Math. Dokl. 18, no$12 (1977), 270–272. (Dokl. Akad Nauk SSSR 233, no. 1 (1977), 15–17 )MathSciNetGoogle Scholar
  1112. [14]
    Kanatnikov, A.N.: ‘A converse to Meier’s theorem on meromorphic functions’, Soviet Math. Dokl. 19, no$11 (1978), 162–165. (Dokl. Akad. Nauk SSSR 238, no. 5 (1978), 1043–1046 )MathSciNetGoogle Scholar
  1113. [15]
    Rudin, W.: Function theory in poly discs, Benjamin, 1969.Google Scholar
  1114. [16]
    Khenkin, G.M. and Chirka, E.M.: ‘Boundary properties of holomorphic functions of several complex variables’, J. Soviet Math. 5 (1976), 612–687. (Itogi Nauk. i Tekhn. Sovrem. Probl. Mat. 4 (1975), 13–142 )Google Scholar
  1115. [17]
    Rudin, W.: Function theory in the unit ball of C, Springer, 1980.Google Scholar
  1116. [1]
    MacLane, S.: Homology, Springer, 1963zbMATHGoogle Scholar
  1117. [A1]
    Sweedler, M.: Hopf algebras, Benjamin, 1969.Google Scholar
  1118. [A2]
    Abe, E.: Hopf algebras, Cambridge Univ. Press, 1980.zbMATHGoogle Scholar
  1119. [1]
    Rozenfel’d, B.A.: Non-Euclidean spaces, Moscow, 1969 (in Russian).Google Scholar
  1120. [A1]
    Sommerville, D.M.Y.: Non-Euclidean geometry, Dover, reprint, 1958.zbMATHGoogle Scholar
  1121. [A1]
    Spanier, E.: Algebraic topology, McGraw-Hill, 1966, Chapt. I, Sect. 6.zbMATHGoogle Scholar
  1122. [1]
    Rozenfel’d, B.A.: Non-Euclidean spaces, Moscow, 1969 (in Russian).Google Scholar
  1123. [2]
    Yaglom, I.M., Rozenfel’d, B.A. and Yasinskaya, E.U.: ‘Projective metrics’, Uspekhi Mat. Nauk 19, no. 5 (1964), 51–113 (in Russian).zbMATHGoogle Scholar
  1124. [1]
    Rozenfel’d, B.A.: Non-Euclidean spaces, Moscow, 1969 (in Russian).Google Scholar
  1125. [1]
    Bernat, P., ET AL.: Représentations des groupes de Lie résolubles, Dunod, 1972.zbMATHGoogle Scholar
  1126. [2]
    Kirillov, A.A.: Elements of the theory of representations, Springer, 1976 (translated from the Russian).zbMATHGoogle Scholar
  1127. [3]
    Kirillov, A.A.: ‘Local Lie algebras’, Russian Math. Surveys 31, no$14 (1976), 55–75. (Uspekhi Mat. Nauk 31, no. 4 (1976), 57–76 )MathSciNetzbMATHGoogle Scholar
  1128. [A1]
    Szép, J. and Forgó, F.: Introduction to the theory of games, Reidel, 1985.zbMATHGoogle Scholar
  1129. [A2]
    Friedman, J.W.: Oligopoly and the theory of games, North- Holland, 1977.zbMATHGoogle Scholar
  1130. [1]
    Vorob’ev, N.N.: ‘Coalitional games’, Teor. Veroyatn. Primenen. 12, no. 2 (1967), 289–306 (in Russian). English summary.Google Scholar
  1131. [1]
    American National Standard. Programming Language COBOL, ANSI X3.23, 1974.Google Scholar
  1132. [2]
    Babenko, L.P., et al.: ‘Algorithmic languages’, in Proc. first All-union Conf Programming, Kiev, 1968, pp. 3–15 (in Russian).Google Scholar
  1133. [3]
    The programming language COBOL, GOST 22558–77 (in Russian).Google Scholar
  1134. [4]
    Yushchenko, E.L., COBOL, Kiev, 1974 (in Russian).Google Scholar
  1135. [1]
    Stong, R.E.: Notes on cobordism theory, Princeton Univ. Press, 1968.zbMATHGoogle Scholar
  1136. [2]
    Conner, P.E. and Floyd, E.E.: Differentiable periodic maps, Springer, 1964.zbMATHGoogle Scholar
  1137. [3]
    Novncov, S.P.: ‘Methods of algebraic topology from the point of view of cobordism theory’, Izv. Akad Nauk SSSR Ser. Mat. 31, no. 4 (1967), 855–951 (in Russian).MathSciNetGoogle Scholar
  1138. [4]
    Brocker, T. and Tom Dieck, T.: Kobordismentheorie, Springer, 1970.Google Scholar
  1139. [5]
    Buchstaber, V.M. [V.M. Bukhshtaber]: ‘Cobordisms in problems of algebraic topology’, J. Soviet Math$17, no$14 (1975), 629–653. (Itogi Nauk. i Tekh. Algebra. Geom. Topol. (1975), 231–272 )Google Scholar
  1140. [A1]
    Ravenel, D.C.: Complex cobordism and stable homotopy groups of spheres, Acad. Press, 1986.zbMATHGoogle Scholar
  1141. [A2]
    Hazewinkel, M.: Formal groups and applications, Acad. Press, 1978zbMATHGoogle Scholar
  1142. [A3]
    Quillen, D.: ‘Elementary proofs of some results of cobordism theory using Steenrod operations’, Adv. Math. 7 (1971), 29–56.MathSciNetCrossRefzbMATHGoogle Scholar
  1143. [A4]
    Quillen, D.: ‘On the formal group laws of unoriented and complex cobordism theory’, Bull. Amer. Math. Soc 75 (1969), 1293–1298.MathSciNetCrossRefzbMATHGoogle Scholar
  1144. [A5]
    Adams, J.F.: Stable homotopy and generalized homology, Univ. Chicago Press, 1974.Google Scholar
  1145. [A6]
    Brown, E.H. and Peterson, F.P.: ‘A spectrum whose ZP cohomology is the algebra of reduced p-th powers’, Topology 5 (1966), 149–154.MathSciNetCrossRefzbMATHGoogle Scholar
  1146. [A7]
    Araki, S.: Typical formal groups in complex cobordism and K-theory, Kinokyniya Book Store, 1973.zbMATHGoogle Scholar
  1147. [A8]
    Hazewinkel, M.: ‘Constructing formal groups III: applications to complex cobordism and Brown — Peterson cohomology’, J. Pure Appl. Algebra 10 (1977), 1–18.MathSciNetCrossRefzbMATHGoogle Scholar
  1148. [A9]
    Landweber, P.S.: ‘BP’(BP) and typical formal groups’, 12 (1975), 357–363, Osaka J. Math..Google Scholar
  1149. [A10]
    Landweber, P.S.: ‘Invariant regular ideals in Brown —Peterson cohomology’, Duke Math. J. 42 (1975), 499–505.MathSciNetCrossRefzbMATHGoogle Scholar
  1150. [A11]
    Miller, H.R., Ravenel, D.C. and Wilson, W.S.: ‘Periodic phenomena of the Adams-Novikov spectral sequence’, Ann. of Math. 106 (1977), 469–516.MathSciNetCrossRefzbMATHGoogle Scholar
  1151. [A12]
    Bukhshtaber, V.M., Mishchenko, A.S. and Novikov, S.P.: ‘Formal groups and their role in the apparatus of algebraic topology’, Russ. Math. Surveys 26 (1971), 63–90. (Uspekhi Mat. Nauk 26 (1971), 131–154 )zbMATHGoogle Scholar
  1152. [1]
    Fox, R.H. and Milnor, J.W.: ‘Singularities of 2-spheres in 4- space and cobordism of knots’, Osaka Math. J. 3 (1966), 257– 267.Google Scholar
  1153. [2]
    Kervaire, M.A.: ‘Les noeuds de dimensions superieures’, Bull. Soc. Math. France 93 (1965), 225–271.MathSciNetzbMATHGoogle Scholar
  1154. [3]
    Levine, J.: ‘Knot cobordism groups in codimension 2’, Comment. Math. Heb. 44 (1969), 229–244.CrossRefzbMATHGoogle Scholar
  1155. [4]
    Levine, J.: ‘Invariants of knot cobordism’, Invent. Math. 8 (1969), 98–110.CrossRefGoogle Scholar
  1156. [5]
    Capell, S.E. and Shaneson, J.L.: ‘Topological knots and knot cobordism’, Topology 12 (1973), 33–40.MathSciNetCrossRefGoogle Scholar
  1157. [6]
    Stoltzfus, N.W.: ‘Unraveling the integral knot concordance group’, Mem. Amer. Math. Soc. 12 (1977), 192MathSciNetGoogle Scholar
  1158. [A1]
    Kaufmann, L.H.: On knots, Princeton Univ. Press, 1987.Google Scholar
  1159. [1]
    Hilton, P.J. and WyliE, S.: Homology theory. An introduction to algebraic topology, Cambridge Univ. Press, 1960.CrossRefzbMATHGoogle Scholar
  1160. [2]
    Maclane, S.: Homology, Springer, 1963.zbMATHGoogle Scholar
  1161. [A1]
    Steenrod, N.E. and Eilenberg, S.: Foundations of algebraic topology, Princeton Univ. Press, 1966.Google Scholar
  1162. [A2]
    Spanier, E.H.: Algebraic topology, McGraw-Hill, 1966.zbMATHGoogle Scholar
  1163. [A3]
    Maunder, C.R.F.: Algebraic topology, v. Nostrand-Reinhold, 1970.zbMATHGoogle Scholar
  1164. [1]
    Savelov, A.A.: Plane curves, Moscow, 160 (in Russian)Google Scholar
  1165. [A1]
    Lawrence, J.D.: A catalog of special plane curves, Dover, reprint, 1972.zbMATHGoogle Scholar
  1166. [1]
    Dadaev, Yu.G.: The theory of arithmetic codes, Moscow, 1981 (in Russian).Google Scholar
  1167. [2]
    Peterson, W. and Weldon, E., JR.: Error-correcting codes, M.I.T., 1972.zbMATHGoogle Scholar
  1168. [3]
    Massey, J.L. and Garcia, O.N.: Advances in information systems science, Vol. 4, New York-London, 1972, pp. 273–326.Google Scholar
  1169. [4]
    Boyarinov, I.M. and Kabatyanskii, G.A.: ‘Perfect single- error-correcting arithmetic AN-codes’ Problemy Peredachi Informatsii 12, no. 1 (1976), 16–23 (in Russian).MathSciNetzbMATHGoogle Scholar
  1170. [1]
    Bourbaki, N.: Elements of mathematics. Algebra: Algebraic structures. Linear algebra, 1, Addison-Wesley, 1974, Chaptl; 2 (translated from the French).Google Scholar
  1171. [2]
    Bourbaki, N.: Elements of mathematics. Differentiate and analytic manifolds, Addison-Wesley, 1966 (translated from the French).Google Scholar
  1172. [3]
    Golubitsky, M. and Guillemin, V.: Stable mappings and their singularities,, Springer, 1973.Google Scholar
  1173. [1]
    Shannon, G: ‘A mathematical theory of communication’, Bell Systems Techn. J. 27 (1948), 379–423; 623–656.MathSciNetGoogle Scholar
  1174. [2]
    McMillan, B.: Kibernet. Sb. 3 (1961), 88–92.MathSciNetGoogle Scholar
  1175. [3]
    Haffman, D.: Kibernet. Sb. 3 (1961), 79–87.Google Scholar
  1176. [4]
    Schützenberger, M.P.: ‘On synchronizing prefix codes’, Information and control 11 (1967), 396–401.CrossRefzbMATHGoogle Scholar
  1177. [5A]
    Markov, Al.A.: ‘Non-recurrent coding’, Problemy Kibernet. 8 (1962), 169–186 (in Russian)Google Scholar
  1178. [5B]
    Markov, Al.A.: ‘Non-uniform error-correcting codes’, Problemy Kibernet. 12 (1964), 137–153 (in Russian).Google Scholar
  1179. [5C]
    Markov, Al.A.: Problemy Kibernet. 19 (1967), 307–309.Google Scholar
  1180. [5D]
    Markov, Al.A.: ‘Foundation of a general theory of codes’, Problemy Kibernet. 31 (1976), 77–108 (in Russian).Google Scholar
  1181. [1]
    Shannon, C.: ‘A mathematical theory of communication’, Bell Systems Techn. J. 27 (1948), 379–423; 623–656.MathSciNetGoogle Scholar
  1182. [2]
    Berlekamp, E.: Algebraic coding theory, McGraw-Hill, 1968.zbMATHGoogle Scholar
  1183. [3]
    Peterson, W. and Weldon, E., Jr.: Error-correcting codes, M.I.T. Press, 1972.zbMATHGoogle Scholar
  1184. [4]
    Discrete mathematics and mathematical problems in cybernetics, 1, Moscow, 1974, Sect. 5 (in Russian)Google Scholar
  1185. [5]
    Bassalgo, L.A., Zyablov, V.V. and Pinsker, M.S.: ‘Problems of complexity in the theory of correcting codes’, Problems of Information Transmission 13, no. 3, 166–175.Google Scholar
  1186. [6]
    Sidel’nikov, V.M.: ‘New bounds for densest packings of spheres in n-dimensional Euclidean space’, Math. USSR-Sb. 24 (1974), 147–157. (Mat. Sb. 95, no. 1 (1974), 148–158.)Google Scholar
  1187. [A1]
    MacWilliams, F.J. and Sloane, N.J.A.: The theory of error-correcting codes, I-II, North-Holland, 1977.zbMATHGoogle Scholar
  1188. [A2]
    Lint, J.H. Van: Introduction to coding theory, Springer, 1982.zbMATHGoogle Scholar
  1189. [1]
    Goluzin, G.M.: Geometric methods in the theory of functions of a complex variable, Amer. Math. Soc., 1969 (translated from the Russian).Google Scholar
  1190. [2]
    Bazilevich, I.E.: Forty years of mathematics in the USSR, 1917–1957, Vol. 1, Moscow, 1959, pp. 444–472 (in Russian).Google Scholar
  1191. [3]
    Jenkins, J. A.: Univalent functions and conformal mapping, Springer, 1958.zbMATHGoogle Scholar
  1192. [4]
    Hayman, W.K.: ‘Coefficient problems for univalent functions and related function classes’, J. London Math. Soc. 40, no. 3 (1965), 385–406.MathSciNetCrossRefGoogle Scholar
  1193. [5]
    Goodman, A.W.: ‘Open problems on univalent and multivalent functions’, Bull. Amer. Math. Soc. 74, no. 6 (1968), 1035–1050.MathSciNetCrossRefzbMATHGoogle Scholar
  1194. [6]
    Phelps, D.: ‘On a coefficient problem in univalent functions’, Trans. Amer. Math. Soc. 143 (1969), 475–485.MathSciNetCrossRefzbMATH