Skip to main content

Abstract

THE MOST important factors in the environment, which influence the physiology of insects, are temperature and humidity. In their effects, these are constantly reacting upon one another; it is therefore necessary always to consider them side by side.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. AGRELL, I. Arkiv. Zool., 39A (1947), No. 10, 1–48 (temperature and metabolism in insects).

    Google Scholar 

  2. ALI, M. Z. angew. Entom., 20 (1934), 354–81 (effect of temperature and humidity: Lymantria, Lep.).

    Article  Google Scholar 

  3. ANDERSEN, K. T. Z. Morph. Oekol. Tiere, 17 (1930), 649–76 (effect of temperature and humidity on egg development: Sitona, Col.).

    Article  Google Scholar 

  4. AUBER, L., and RAYMONT, J. E. G. Nature, 153 (1944), 314 (water content: Ephestia, Lep.).

    Article  ADS  Google Scholar 

  5. BABCOCK, S. M. Univ. Wisconsin Agric. Exp. Sta. Res. Bull., No. 22 (1912), 181 pp. (metabolic water: Tineola larva, Lep., andc.).

    Google Scholar 

  6. BABERS, F. H. J. Agric. Res., 57 (1938), 697–706 (body temperature of caterpillar: Prodenia).

    CAS  Google Scholar 

  7. BACHMETJEV, P. Z. wiss. Zool., 66 (1899), 520–604 (body temperature of insects).

    Google Scholar 

  8. BATTELLI, F., and STERN, L. Biochem. Z, 56 (1913), 50–8 (effect of temperature on respiration: Muscidae, andc.).

    Google Scholar 

  9. BELEHRÄDEK, J. Temperature and living matter, Borntraeger, Berlin, 1935.

    Google Scholar 

  10. BERGER, B. Arch. ges. Physiol., 118 (1907), 607–12 (resistance to desiccation: Tenebrio larva, Col.).

    Article  Google Scholar 

  11. BIRCH, L. C., et al. Austral. J. Exp. Biol. Med. Sci., 22 (1944), 265–9; 23 (1945), 37–40 (development of eggs at different temperature and humidity: Calandra, Rhizopertha, Col.).

    Article  Google Scholar 

  12. BIRCH, L. c., and ANDRAWARTHA, H. G. Austral. J. Exp. Biol. Med. Sci., 20 (1942), 1–8 (water relations of egg: Austroicetes, Orth.).

    Google Scholar 

  13. BLUNCK, H. Z. wiss. Zool., III (1914), 76–157 (development in Dytiscus, Col.: embryo); Ibid., 121 (1924), 171–391 (ditto: larva and pupa).

    Google Scholar 

  14. BODENHEIMER, F. S. Z. vergl. Physiol., 13 (1931), 240–7 (relation between preferred temperature and atmospheric humidity).

    Google Scholar 

  15. Zool. Jahrb., Syst., 66 (1934), 113–51 (body temperature: review).

    Google Scholar 

  16. BODINE, J. H. J. Exp. Zool., 32 (1921), 137–64; 37 (1923), 457–76 (water content during hibernation: Chortophaga, andc., Orth.).

    Google Scholar 

  17. Physiol. Zool., 6 (1933), 150–8 (effect of hypertonic solutions on oxygen uptake: Melanoplus egg, Orth.).

    Google Scholar 

  18. BODINE, J. H., and EVANS, T. C. Biol. Bull., 63 (1932), 235–45 (metabolism during diapause: Sceliphron, Hym.).

    Google Scholar 

  19. BRANDT, H. Z. vergl. Physiol., 23 (1936), 715–20 (temperature and rate of crawling: Lymantria, Lep.).

    Google Scholar 

  20. BRUES, C. T. Quart. Rev. Biol., 2 (1927), 181–207 (animal life in hot springs).

    Google Scholar 

  21. V. BUDDENBROCK, w., and v. ROHR, G. Arch. ges. Physiol., 194 (1922), 468–72 (effect of temperature on metabolism: Dixippus, Orth.).

    Google Scholar 

  22. BUXTON, P. A. Proc. Roy. Soc., B, 96 (1924), 123–31 (temperature and humidity relations of desert insects).

    Google Scholar 

  23. BUXTON, P. A. Proc. Roy. Soc., B, 106 (1930), 560–77 (evaporation from Tenebrio larva, Col.).

    Google Scholar 

  24. BUXTON, P. A. Proc. Ent. Soc. Lond., 6 (1931), 27–31 (Dalton and#x2018;s law applied to insects).

    Google Scholar 

  25. BUXTON, P. A. Parasitology, 24 (1932), 429–39 (humidity relations: Rhodnius, Hem.).

    Google Scholar 

  26. BUXTON, P. A. Biol. Rev., 7 (1932), 275–320 (insects and humidity: review).

    Google Scholar 

  27. CAMPBELL, R. E. Ecology, 18 (1937), 479–89 (temperature preference: Limonius, Col.).

    Google Scholar 

  28. CHAPMAN, R. N. Amer. Nat., 62 (1928), 298–310 (temperature and activity of insects on sand dunes).

    Google Scholar 

  29. COOK, S. F., and SCOTT, K. G. Biol. Bull., 63 (1932), 505–12 (water relations: Termopsis, Isopt.).

    Google Scholar 

  30. COUSIN, G. Bull. Biol. Fr. Belg., Suppl. 15 (1932), 341 pp. (diapause: Lucilia, Dipt.).

    Google Scholar 

  31. CRESCITELLI, F. J. Cell. Comp. Physiol., 6 (1935), 351–68 (effect of temperature on respiratory metabolism: Galleria pupa, Lep.).

    Google Scholar 

  32. CROZIER, W. J., et al. J. Gen. Physiol., 7 (1924), 123–36; 429–47; 565–70; 10 (1927), 479–500 (effect of temperature on various processes in insects).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. DAVIDSON, J. Austral. J. Exp. Biol. Med. Sci., 20 (1942), 233–9; J. Animal Ecol., 13 (1944), 26–38 (temperature and rate of development).

    Google Scholar 

  34. DEAL, J. J. Animal Ecol., 10 (1941), 323–56 (temperature preferendum).

    Google Scholar 

  35. DITMAN, L. P., et al. J. Econ. Ent., 35 (1942), 265–72 (cold hardiness).

    Article  CAS  Google Scholar 

  36. DOBZHANSKY, T., and POULSON, D. F. Z. vergl. Physiol., 22 (1935), 473–8 (temperature and oxygen consumption: Drosophila pupa).

    Google Scholar 

  37. DOTTERWEICH, H. Zool. Jahrb., Physiol., 44 (1928), 399–425 (body temperature during flight: Sphingidae).

    Google Scholar 

  38. DUSPIVA, F., and CERNY, M. Z. vergl. Physiol., 21 (1934), 267–74 (solar radiation and temperature: Coleoptera).

    Google Scholar 

  39. EDNEY, E. B. Bull. Ent. Res., 35 (1945), 399–416; 38 (1947), 263–80 (water and temperature relations: Xenopsylla, Aphanipt.).

    Google Scholar 

The Principles of Insect Physiology

  1. EVANS, A. C. Parasitology, 26 (1934), 366–77 (effect of temperature and humidity on Lucilia, Dipt., eggs); Ibid., 27 (1935), 291–8 (ditto: prepupae and pupae).

    Google Scholar 

  2. Ann. Appl. Biol., 31 (1944), 235–50 (water relations: Agriotes larva, Col.).

    Google Scholar 

  3. FRAENKEL, G. Biol. Zentralbl., 49 (1929), 657–80 (behaviour in respect to solar radiation: Schistocerca, Orth.).

    Google Scholar 

  4. GALLIARD, H. Recherches morphologiques et biologiques sur la reproduction des rdduvides hematophages (Rhodnius et Triatoma), thesis, Paris, 1935, 160 pp.

    Google Scholar 

  5. FRAENKEL, G., and BLEWETT, M. Bull. Ent. Res., 35 (1944), 127–39 (metabolic water in insects).

    Google Scholar 

  6. GIRARD, M. Ann. Soc. Ent. Fr., (sér. 4), 1 (1861), 503–8; 2 (1862), 345-7; 3 (1863), 92–8; Ann. Sci. Nat., Zool., (sér. 5), II (1869), 135–274 (temperature of insects).

    Google Scholar 

  7. GUNN, D. L. Nature, 128 (1931), 186–7; Z. vergl. Physiol., 20 (1934), 617–25; J. Exp. Biol., 12 (1935), 185–90; J. Exp. Biol., 15 (1938), 555–63 (effect of desiccation on the temperature preference of the cockroach).

    Google Scholar 

  8. GUNN, D. L. Biol. Rev., 17 (1942), 293–314 (body temperature of insects).

    Google Scholar 

  9. GUNN, D. L., and NOTLEY, F. B. J. Exp. Biol., 13 (1936), 28–34 (effect of atmospheric humidity on the thermal death-point of cockroaches).

    Google Scholar 

  10. GUNN, D. L., and HOPF, H. S. J. Exp. Biol., 18 (1942), 278–89 (temperature adaptation: Ptinus, Col.).

    Google Scholar 

  11. HARRIES, F. H. J. Agric. Res., 69 (1944), 127–36 (varying temperature and development: Eutettix, Hem.).

    Google Scholar 

  12. HEADLEE, T. J. J. Econ. Entom., 10 (1917), 31–8 (effect of humidity on rate of development: Sitotroga, Lep., Bruchus, Col.).

    Google Scholar 

  13. van HEERDT, P. F. Thesis, Utrecht, 1946 (physiology and ecology of Forficula).

    Google Scholar 

  14. HERTER, K. Z. vergl. Physiol, 2 (1924), 226–32; Biol. Zentralbl, 43 (1923), 282–5 (preferred temperature: Acheta, Orth., Formica, Hym., andc.).

    Google Scholar 

  15. Verhandl vii internat. Kongr. Entom., 1938, Berlin, 2 (1939), 740~59; Z. Parasitenk., 12 (1942), 552–91 (temperature preferences, *andc.).

    Google Scholar 

  16. HIMMER, A. Biol Rev., 7 (1932), 224–53 (temperature relations of social Hymenoptera: review).

    Google Scholar 

  17. HOCHRAINER, H. Zool. Jahrb.–, Abt. Physiol, 60 (1942), 387–436 (water content of insects).

    Google Scholar 

  18. HODSON, A. c. Ecol Monogr., 7 (1937), 271–315 (water relations during hibernation).

    Google Scholar 

  19. HOPF, H. s. Biochem. J., 34 (1940), 1396–1403 (effect of high temperature: muscid larvae).

    Google Scholar 

  20. JACK, R. w. Mem. Dept. Agric. No. 1, S. Rhodesia, 1939, 1–203 (water and temperature relations: Glossina, Dipt.).

    Google Scholar 

  21. JANISCH, E. Z. wiss. Zool, 132 (1928), 176–86 (effect of temperature on rate of development in insects).

    Google Scholar 

  22. JOHNSON, c. G. Parasitology, 32 (1940), 239–70; Biol Rev., 17 (1942), 151–77 (insect survival and water loss).

    Google Scholar 

  23. KALABUCHOV, N. I. Zool Jahrb., Physiol, 53 (1934), 567–602 (effect of low temperature on metabolism: honey–bee).

    Google Scholar 

  24. KALMUS, H. Z. wiss. Mikr. mikr. Tech., 53 (1936), 215–19 (water balance in Tenebrio, Col.).

    Google Scholar 

  25. KOIDSUMI, K. Mem. Fac. Sci. Agric. Taihoku Imp. Univ., 12 (1934), 1–380 (temperature and humidity relations of insects).

    Google Scholar 

  26. KOJIMA, T. Z. angew. Entom., 20 (1934), 329–53 (effect of temperature and humidity: Dendrolimus, Lep.).

    Article  Google Scholar 

  27. KOSMIN, N. P., et al Z. vergl Physiol, 17 (1932), 408–22 (metabolism during activity: honey–bee).

    Google Scholar 

  28. KOZHANTSCHIKOV, i. v. C. R. Acad. Sei. U.S.S.R., 3 (1935), 373–6 (metabolism at temperatures below zero: Pyralidae).

    Google Scholar 

  29. KOZHANTSHIKOV, I., and MASLOWA, E. Zool. Jahrb., Physiol, 55 (1935), 219–30 (optimum temperature for pupal development: Lepidoptera).

    Google Scholar 

  30. KOZHANTSHIKOV, I. W. Bull Ent. Res., 29 (1938), 253–62 (cold hardiness and respiration).

    Google Scholar 

  31. KROGH, A. Z. allg. Physiol, 16 (1914), 163–90 (effect of temperature on development: Acilius eggs, Tenebrio pupae, Col.).

    Google Scholar 

  32. KROGH, A. The Respiratory Exchange of Animals and Man, Monographs of Biochemistry, London, 1916.

    Book  Google Scholar 

  33. KROGH, A., and ZEUTHEN, E. J. Exp. Biol., 18 (1941), 1–10 (flight preparation and body temperature).

    Google Scholar 

  34. KRÜGER, p., and DUSPIVA, F. Biol. Generalis, 9 (1933), 168–88 (effect of solar radiation on body temperature).

    Google Scholar 

  35. LARSEN, E. B. Kgl. Danske Vidensk. Selsk. Biol. Medd., 19 (1943), No. 3, 1–52 (heat death in insects).

    Google Scholar 

  36. LARSEN, E. B., and THOMSEN, M. Vidensk. Medd. Dansk Naturh. Foren., 104 (1940), 1–25 (temperature and development in Muscidae).

    Google Scholar 

  37. LUDWIG, D. Physiol. Zool., 1 (1928), 358–89 (temperature and rate of development: Popilliay Col.).

    Google Scholar 

  38. J. Exp. Zool., 60 (1931), 309–23; Physiol. Zool., 9 (1936), 27–42 (desiccation and metamorphosis: Popillia, Col.).

    Google Scholar 

  39. Physiol. Zool., 10 (1937), 342–51 (humidity and survival: Chortophaga, Orth.).

    Google Scholar 

  40. LUDWIG, D., and CABLE, R. M. Physiol. Zool., 6 (1933), 493–508 (alternating temperatures and pupal development: Drosophila).

    Google Scholar 

  41. LUDWIG, D., and LANDSMAN, H. M. Physiol. Zool., 10 (1937), 171–9 (humidity and survival: Popilliay Col.).

    Google Scholar 

  42. LUDWIG, D., et al. Physiol. Zool., 15 (1942), 48–60; 18 (1945), 103–55; Ecologyf 23 (1942), 259–74 (water and temperature relations in various insects).

    Article  Google Scholar 

  43. MELLANBY, K. y. Exp. Biol., 9 (1932), 222–31 (thermal death point: Pediculus, Lucilia, Xenopsyllay Tenebrio).

    Google Scholar 

  44. Proc. Roy. Soc., B, 111 (1932), 376–90 (effect of temperature and humidity: Tenebrio larva, Col.); Parasitology, 24 (1932), 419–28 (ditto: Cimexy Hem.); Bull. Ent. Res., 24 (1933), 197–202 (ditto: Xenopsyllay Aphanipt. during pupation); Ann. Appl. Biol., 21 (1934), 476–82 (ditto: Tineola larva, Lep.).

    Google Scholar 

  45. Proc. Ent. Soc. Lond., 1933, 22–4 (evaporation and temperature in the insect’s environment).

    Google Scholar 

  46. J. Exp. Biol., 11 (1934), 48–53 (effect of nutrition on thermal death-point: Pediculus, Culex.).

    Google Scholar 

  47. Biol. Rev., 10 (1935), 317–33 (evaporation from insects: review).

    Google Scholar 

  48. Nature, 138 (1936), 124 (atmospheric humidity and metabolism).

    Google Scholar 

  49. Bull. Ent. Res., 27 (1936), 611–32 (temperature and activity: Glossina, Dipt.).

    Google Scholar 

  50. Parasitology, 30 (1938), 392–402 (water content and body size: Lucilia).

    Google Scholar 

  51. Proc. Roy. Soc. Lond., B, 127 (1939), 473–87;. Animal Ecol., 9 (1940), 296–301 (adaptation of insects to low temperatures).

    Google Scholar 

  52. MELVIN, R. Biol. Bull., 55 (1928), 135–42 (oxygen consumption of eggs: Samia, Lep.).

    Google Scholar 

  53. Ann. Ent. Soc. Amer., 27 (1934), 406–10 (temperature and rate of development: Muscidae eggs).

    Google Scholar 

  54. MOSEBACH–PUKOWSKI, E. Z. Morph. Oekol. Tiere, 33 (1937),. 358–80 (temperature in larval colonies: Vanessa, Lep.).

    Google Scholar 

  55. NECHELES, H. Arch. ges. Physiol., 204 (1924), 72–93 (temperature regulation: Periplaneta, Orth.).

    Google Scholar 

  56. NICHOLSON, A. j. Bull. Ent. Res., 25 (1934), 85–99 (temperature and activity: Muscidae).

    Google Scholar 

  57. NIESCHULZ, O. Zool. Anz., 103 (1933), 21–7; 110 (1935), 225–33; Z. Parasitenk., 6 (1933), 220–42; Z. angew. Entom., 21 (1934), 224–38 (preferred temperature and activity ränge: Stomoxys, Musca, Fannia, Dipt.).

    Google Scholar 

  58. NUTMAN, s. R. Nature, 148 (1941), 168–9 (ventral tube and water uptake: Collembola).

    Google Scholar 

  59. PARHON, M. Ann. Sä. Nat., Zool., (ser. 9), 9 (1909), 1–58 (metabolism of honey–bee in relation to temperature).

    Google Scholar 

  60. PARKER, j. R. Bull. Univ. Montana Agric. Exp. Sta., No. 223 (1930), 132 pp. (effect of temperature on Melanoplus, andc., Orth.).

    Google Scholar 

  61. PAYNE, N. M. y. Morph., 43 (1927), 521–46; Biol. Bull., 52 (1927), 449~57; 55 (1928), 163–79; (cold hardiness: Popilliay Col., andc.).

    Google Scholar 

  62. PEAIRS, L. M. West Virginia Univ. Agric. Exp. Sta. Bull., No. 208 (1927), 62 pp. (temperature and pupal development).

    Google Scholar 

  63. PIRSCH, G. B. J. Agric. Res., 24 (1923), 275–88 (body temperature: honey–bee).

    Google Scholar 

  64. POTONIE, H. W. Biol. Zbl., 44 (1924), 16–57 (temperature and oxygen uptake).

    Google Scholar 

  65. PQWSNER, L. Physiol. Zool., 8 (1935), 474-520 (temperature and rate of development: Drosophild).

    Google Scholar 

  66. PRADHAN, s. Proc. Nat. Inst. Sci. Indiat 12 (1946), 385–404 (temperature and rate of development).

    Google Scholar 

  67. RAIGNIER, A. La Celluh, 51 (1948), 281–368 (temperature in nests of ant: Formica).

    Google Scholar 

  68. RAMSAY, j. A. J. Exp. Biol., 12 (1935), 373_83 (evaporation from the cockroach).

    Google Scholar 

  69. ROBINSON, w. Ann. Ent. Soc. Amer., 21 (1928), 407–17 (and#x2018;bound*and#x2018; water and cold resistance).

    Google Scholar 

  70. RÜCKER, F. Arch. ges. Physiol., 231 (1933), 729–49 (solar radiation and body temperature).

    Google Scholar 

  71. Z. vergl. Physiol., 21 (1934), 275–80 (reflection of infra–red rays from elytra of beetles).

    Google Scholar 

  72. SACCHAROV, N. L. Ecology, Ii (1930), 505–17 (resistance to cold).

    Google Scholar 

  73. SALT, R. w. Univ. Minnesota Agric. Exp. Sta. Tech. Bull., No. 116 (1936), 41 pp. (freezing in living insects).

    Google Scholar 

  74. SANDERSON, E. D. J. Econ. Entom., 3 (1910), 113–39 (temperature and rate of growth).

    Google Scholar 

  75. SAYLE, M. H. Biol. Bull., 54 (1928), 212–30 (temperature and metabolic rate: Aeschna nymphs, Odonata).

    Google Scholar 

  76. SCHNEIDER, F. Mitt. Schweiz, ent. Ges., 21 (1948), 248–85 (water relations in diapause: Syrphidae).

    Google Scholar 

  77. SCHULZ, F. N. Oppenheimer and#x2018;s Handb. d. Biochemie, 2nd Edn., 7 (1927), 439–88 (metabolism of insects).

    Google Scholar 

  78. SIEGLER, E. H. J. Agric. Res., 72 (1946), 329–40 (cold hardiness: Cydiay Lep.).

    Google Scholar 

  79. SMART, j. J. Exp. Biol., 12 (1935), 384–8 (effects of temperature and humidity: Piophila, Dipt.).

    Google Scholar 

  80. SPEICHER, B. R. Proc. Pa. Acad. Sei., 5 (1931), 79 (effect of desiccation on growth: Ephestia, Lep.).

    Google Scholar 

  81. STEINER, A. Z. vergl. Physiol., 9 (1929), 1–66 (temperature regulation in nests of ants, Formica); Ibid., 11 (1930), 461–502 (ditto in nest of wasp Polistes).

    Google Scholar 

  82. STRELNIKOW, I. D. C.R. Acad. Sei., 192 (1931), 1317–19 (solar radiation and body temperature: Bombus, Hym.).

    Google Scholar 

  83. THEODOR, O. Bull. Ent. Res., 27 (1936), 653–71 (effect of temperature and humidity: Phlebotomus, Dipt. Nemat.).

    CAS  Google Scholar 

  84. THOMSEN, E., and THOMSEN, M. Z. vergl. Physiol., 24 (1937), 343–80 (preferred temperature: Muscid larvae).

    Google Scholar 

  85. THOMSON, R. c. M. Bull. Ent. Res., 29 (1938), 125–140 (response to temperature and humidity: Culex, Dipt.).

    Article  Google Scholar 

  86. TOWER, w. L. Biol. Bull., 33 (1917), 229–57 (water relations in hibernation: Leptinotarsay Col.).

    Google Scholar 

  87. UVAROV, B. p. Trans. Ent. Soc. Lond., 79 (1931), 1–247 (insects and climate: review).

    Google Scholar 

  88. UVARÖV, B. p. Trans. Roy. Ent. Soc. Lond., 99 (1948), 1–75 (temperature relations of locusts: review).

    Google Scholar 

  89. VOLKONSKY, M. Arch. Inst. Pasteur Älgdr., 17 (1939), 194–220 (insolation and body temperature in locusts). 128OWALSHE, B. M. J. Exp. Biol., 25 (1948), 35~44 (thermal resistance: Chironomid larvae).

    Google Scholar 

  90. WEBER, H. Z. Morph. Oekol. Tierey 23 (1931), 575–753 (biology of TrialeurodeSy Hem.).

    Google Scholar 

  91. WELLINGTON, w. G. Sci. Agric., 29 (1949) 201–15 (rate of evaporation and temperature preference: Choristoneura larva, Lep.).

    Google Scholar 

  92. WEYRAUCH, W. Z. vergl. Physiol., 23 (1936), 51–63 (temperature regulation in nests of social wasps).

    Google Scholar 

  93. a WHITNEY, R. j. J. Exp. Biol., 16 (1939), 374–85 (thermal resistance: Ephemeroptera nymphs).

    Google Scholar 

  94. WIGGLESWORTH, V. B. J. Exp. Biol., 21 (1945), 97–H4 (transpiration from insects).

    Google Scholar 

  95. Unpublished observations.

    Google Scholar 

  96. WILKES, A. Proc. Roy. Soc., B, 130 (1942), 400–15 (temperature preference in different races of the Chalcid, Microplectron).

    Google Scholar 

Supplementary References (A)

  1. DOLLEY, w. L., and WHITE, j. D. Biol. Ball, 100 (1951), 84–9 (effect of illumination on lethal temperature: Eristalis, Dipt.).

    Google Scholar 

  2. HARKER, j. E. Proc. Roy. Ent. Soc. London, A, 25 (1950), 111–14 (temperature adaptation in Ephemeroptera).

    Google Scholar 

  3. HINTON, H. E. Proc. Zool. Soc. Lond., 121 (1951), 371–80 (Chironomid larva surviving dehydration).

    Google Scholar 

  4. LÜSCHER, M. Nature, 167 (1951), 34–5 (*and#x2018;fungus gardens and#x2018; and temperature in termite nests).

    Google Scholar 

  5. SALT, R. w. Canad. Jf. Res., D, 27 (1949), 236–42; 30 (1952) 55–82 (water uptake in eggs of Melanoplus bivittatus).

    Google Scholar 

  6. Canad. J. Res., D, 28 (1950), 285–91 (effect of time of exposure on undercooling temperature of insects).

    Google Scholar 

Supplementary References (B)

  1. ADAMS, P. A., and HEATH, J. E. Nature, 201 (1964), 20–2 (temperature regulation in Celerio during flight).

    Google Scholar 

  2. AOKI, K., and SCHINOZAKI, J. Low Temp. Sci., 10 (1953), 103–16 (undercooling of the prepupa of the slug moth Cnidocampa).

    Google Scholar 

  3. ASAHINA, E., et al. Kintyü, 19 (1951), 13–18; Bull. Ent. Res., 45 (1954), 329–39; Nature, 182 (1958), 327–8 (freezing in frosty-hardy caterpillars, Cnidocampa).

    Google Scholar 

  4. ASAHINA, E. Bull. Marine Biol. Sta. Asamushi, Tohoku Univ., 10 (1962), 251–6 (mechanism of frost resistance).

    Google Scholar 

  5. AZIZ, S. A. Bull. Ent. Res., 48 (1957), 515–31 (humidity and behaviour in Schistocerca).

    Google Scholar 

  6. BALDWIN, W. F., et al. Canad. J. Zool., 32 (1954), 9-i5, 157-71; 34 (1956), 565–7 (acclimatization to high temperatures).

    Article  Google Scholar 

  7. BILEHRÄDEK, J. Ann. Rev. Physiol., 19 (1957), 59-82 (physiological aspects of heat and cold: review).

    Google Scholar 

  8. BROWNING, T. O. Aust. J. Sei. Res., 5 (1952), 96–111 (temperature and rate of development in eggs of Gryllulus).

    Google Scholar 

  9. BÜNNING, E. Biol. Zbl., 77 (1958), 141–52 (temperature and diurnal rhythms in Periplaneta).

    Google Scholar 

  10. BURSELL, E. Proc. Roy. Ent. Soc. Lond., A, 32 (1957), 21–9 (water relations in Glossina: spiracular control); J. Exp. Biol, 37 (i960), 689–97 (ditto: feeding and excretion).

    Google Scholar 

  11. Phil. Trans. Roy. Soc., B, 241 (1958), 179–210 (water balance in Glossina pupa).

    Google Scholar 

  12. Bull. Ent. Res., 51 (1960), 583–98 (optimum temperature of development in Glossina).

    Google Scholar 

  13. CHURCH, N. S. J. Exp. Biol., 37 (1960), 171–85 (heat loss and body temperature in flying insects).

    Google Scholar 

  14. COCKBAIN, A. J. Jf. Exp. Biol., 38 (1961), I75-8O (water loss of Aphids in flight).

    Google Scholar 

  15. COLHOUN, E. H. Nature, 173 (1954), 582; Ent. Exp. Appl., 3 (1960), 27–37 (acclimatization to cold in Blattella).

    Google Scholar 

  16. DEHNEL, P. A., and SEGAL, E. Biol. Bull., III (1956), 53~6I (acclimatization of oxygen consumption to temperature in Periplaneta).

    Google Scholar 

  17. DODDS, S. E., and EWER, D. W. Nature, 170 (1952), 758 (desiccation and humidity preference in Tenebrio).

    Google Scholar 

  18. DRUMMOND, F. H. Proc. Roy. Ent. Soc. Lond. A, 28 (1953), 145–8 (eversible vesicles of Campodea and water absorption).

    Google Scholar 

  19. EDNEY, E. B. The water relations of terrestrial Arthropods, Cambridge University Press, 1957, 109 pp.

    Google Scholar 

  20. EDNEY, E. B., and BARASS, R. J. Ins. Physiol., 8 (1962), 469–81 (body temperature in Glossina).

    Google Scholar 

  21. EDWARDS, G. A., and NUTTING, W. L. Psyche, 57 (1950), 33–44 (temperature ränge of activity in Thermobia and Grylloblatta).

    Google Scholar 

  22. HANEC, W., and BECK, S. D. J. Ins. Physiol., 5 (1960), 169–80 (cold hardiness in Pyrausta).

    Google Scholar 

  23. HENSON, W. R. Nature, 179 (1957), 637 (temperature preference in Grylloblatta).

    Google Scholar 

  24. HINTON, H. E. Nature, 188 (1960), 336–7; Proc. Roy. Ent. Soc., C, 25 (1960), 7; J. Ins. Physiol., 5 (1960), 286–300 (cryptobiosis in Polypedilum).

    Google Scholar 

  25. HOUSE, H. L., RIORDAN, D. F., and BARLOW, J. S. Canad. J. Zool., 36 (1958), 629–32 (dietary lipids and thermal conditioning affecting heat resistance in Agria larva, Dipt.).

    Google Scholar 

  26. JAKOVLEV, v., and KRÜGER, F. Biol. Zbl., 73 (1954), 633–50 (desiccation and preferred temperature in grasshoppers).

    Google Scholar 

  27. LEADER, J. P. J. Ins. Physiol., 8 (1962), 155–63 (dehydration and frost resistance in Polypedilum).

    Google Scholar 

  28. MAELZER, D. A. Nature, 178 (1956), 874 (pF scale and behaviour of Aphodius in the soil).

    Google Scholar 

  29. MARZUSCH, K. Z. vergl. Physiol., 34 (1952), 75–92 (temperature adaptation of metabolism in various insects).

    Google Scholar 

  30. MELLANBY, K. Nature, 173 (1954), 582–3 (adaptation to low temperature in Tenebrio and Aedes).

    Google Scholar 

  31. Bull. Ent. Res., 50 (1960), 821–3 (adaptation to high temperature in Aedes).

    Google Scholar 

  32. MELLANBY, K., and FRENCH, R. A. Ent. Exp. et Appl., 1 (1958), 116–24 (drinking of water by larval insects).

    Google Scholar 

  33. MUNSON, S. C. J. Econ. Ent., 46 (1953), 657–66 (effect of temperature on the lipids in Periplaneta).

    Google Scholar 

  34. MUTCHMOR, j. A., and RICHARDS, A. G. J. Ins. Physiol., 7 (1961), 141–58 (effect of low temperature on apyrase in Periplaneta, *andc.).

    Google Scholar 

  35. NIELSEN, E. T., and EVANS, D. G. Oikos, II (i960), 200–22 (temperature and pupal development in Aedes taeniorhynchus).

    Google Scholar 

  36. NOBLE-NESBITT, J. J. Exp. Biol., 40 (1963), 701–11 (water and ion exchange in Podura).

    Google Scholar 

  37. PATTÉE, E. Bull. Biol. Fr. Belg., 89 (1955), 369–78; 93 (1959), 320–34 (temperature adaptation in aquatic and terrestrial insects).

    Google Scholar 

  38. PEPPERJ J. H., and HASTINGS, E. Ecology, 33 (1952), 96–103 (solar radiation and body temperature in Melanoplus).

    Google Scholar 

  39. PERTTUNEN, v., and ERKKILÄ, H. Nature, 169 (1952), 78 (humidity reactions in Drosophila).

    Google Scholar 

  40. PERTTUNEN, V., and LAGERSPETZ, K. Arch. Zool. Soc. ‘Vanamo’, II (1956), 65–70 (temperature adaptation in Corethra).

    Google Scholar 

  41. RICHARDS, A. G. In Influence of temperature on biological systems, 1957, 145–62; Proc. Xth Int. Congr. Ent., 1956, 2 (1958), 67–22; Biol. Zbl., 78 (1959), 308–14 (temperature thresholds in insect development).

    Google Scholar 

  42. J. Ins. Physiol., 9 (1963), 597–606 (effect of temperature on heart-beat in Periplaneta).

    Google Scholar 

  43. SALT, R. W. Canad. y. Zool., 34 (1956), 1–5, 283–94 (moisture content and cold hardiness).

    Google Scholar 

  44. Proc. Xth. Int. Congr. Ent. 1956, 2 (1958), 73-7; J. Ins. Physiol., 2 (1958), 178–188 (nucleation theory and freezing of supercooled insects).

    Google Scholar 

  45. Canad. J. Zool., 37 (1959), 59–69 (role of glycerol in cold-hardening of Bracon cephi).

    Google Scholar 

  46. Ann. Rev. Ent., 6 (1961), 55–74 (insect cold-hardiness: review).

    Google Scholar 

  47. SCHOLANDER, P. F., et al. J. Cell. Comp. Physiol., 42 (1953), Suppl. 1–56 (frost resistance in Chironomid larvae).

    Article  CAS  Google Scholar 

  48. SELMAN, B. J. J. Ins. Physiol., 6 (1961), 81–3 (tolerance to drying in the haemocytes of Sialis).

    Google Scholar 

  49. SHINOZAKI, J. Low Temp. Sci., (Ser. B), 12 (1962), 1–52 (ice formation in the prepupa of Cnidocampa).

    Google Scholar 

  50. SOMME, L. Canad. J. Zool., 42 (1964), 87–101 (effects of glycerol on cold-hardiness).

    Google Scholar 

  51. SOTAVALTA, O. Ann. Zool. Soc. ‘Vanamo’ 16 (1954), 1–22 (thoracic temperature of insects in flight).

    Google Scholar 

  52. TAKEHARA, I., and ASAHINA, E. Low Temp. Sci., (Ser. B), 18 (1960), 52–6, 58–65; 19 (1961), 30–6 (glycerol and frost resistance in the overwintering prepupa of Cnidocampa).

    Google Scholar 

  53. TANNO, K. Low Temp. Sci., (Ser. B), 20 (1962), 26–34 (glycerol and frost resistance in Camponotus).

    Google Scholar 

  54. VIELMETTER, W. Naturwiss., 41 (1954), 535-6; J. Ins. Physiol., 2 (1958), 13–37 (solar radiation and behaviour of Argynnis).

    Google Scholar 

  55. WILBUR, K. M., and MCMAHAN, E. A. Ann. Ent. Soc. Amer., 51 (1958), 27–32 (protective value of glycerol at low temperature in the heart of Popilius Col.).

    Google Scholar 

Supplementary References (C)

  1. ASAHINA, E. Adv. Insect Physiol., 6 (1969), 1–49 (frost resistance in insects).

    Google Scholar 

  2. ASAHINA, E. and TANNO, K. Nature, 204 (1964), 1222 (trehalose and frost resistance in sawfly, Trichiocampus).

    Google Scholar 

  3. ASAHINA, E. and TANNO, K. Low Temp. Sci., B., 24 (1966), 25–34 (frost resistance in Hyalophora).

    Google Scholar 

  4. BAUST, j. G. and MILLER, L. K. J. Insect Physiol., 16 (1970), 979–90 (glycerol and cold hardiness in Pterostichus, Carabidae).

    Google Scholar 

  5. BUCK, J. J. Insect Physiol., II (1965), 1503–16 (hydration and respiration in Chironomid larvae).

    Google Scholar 

  6. ESCH, H. Z. vergl. Physiol., 48 (1964), 547–51 (temperature and action potentials in thoracic muscles of Apis).

    Google Scholar 

  7. a V HANDEL, E. J. exp. Biol., 46 (1967), 487–9 (temperature and fatty acid composition in Aedes).

    Google Scholar 

  8. HANEC, W. J. Insect Physiol., 12 (1966), 1443–9 (cold hardiness in Malacosoma).

    Google Scholar 

  9. HANEGAN, J. L. and HEATH, J. E. J. exp. Biol., 53 (1970), 349–62; 611–39 (control of body temperature in Hyalophora).

    Google Scholar 

  10. HEATH, J. E. and ADAMS, P. A. Nature, 205 (1965), 309–10; J. exp. Biol., 47 (1967), 21–33 (temperature regulation during flight in Celerio, Sphingidae).

    Google Scholar 

  11. HEINRICH, B. et al. Science, 168 (1970), 580–1; 169 (1970), 606–7; J. exp. Biol., 54 (1971), 141–66; 55 (1971), 223–39 (temperature control during flight in Manduca Sphingidae).

    Article  ADS  CAS  PubMed  Google Scholar 

  12. HOCKING, B. and SHARPLIN, C. D. Nature, 206 (1965), 215 (solar radiation and temperature in aretie mosquitos).

    Google Scholar 

  13. KAMMER, A. E. Z. vergl. Physiol., 68 (1970), 334–44 (temperature and flight in Danaus).

    Google Scholar 

  14. KNÜLLE, w. J. Insect Physiol., 13 (1967), 333–57 (absorption of water vapour in the flea larva Xenopsylla).

    Google Scholar 

  15. KRUNIC, M. D. and SALT, R. W. Can. y. Zool., 49 (1971), 663–6 (glycerol and supercooling in Magachile spp.).

    Article  CAS  Google Scholar 

  16. LOVERIDGE, J. P. J. exp. Biol., 49 (1968), 1–29 (control of water loss in Locusta).

    Google Scholar 

  17. MAKINGS, P. J. exp. Biol., 48 (1968), 247–63 (transpiration through Slifer’s patches in Acrididae).

    Google Scholar 

  18. NOBLE-NESBITT, J. J. exp. Biol., 50 (1969), 745–69; 52 (1970), 193–200; Nature, 225 (1970), 753–4 (water uptake from subsaturated atmospheres in Thermobia and Tenebrio).

    Google Scholar 

  19. OHYAMA, Y. and ASAHINA, E. Low Temp. Sci., 27 (1969), 153–60 (ice formation in Camponotus).

    Google Scholar 

  20. OKASHA, A. Y. K. J. exp. Biol., 48 (1968), 455–86; J. Insect Physiol., 14 (1968), 1621–34; 16 (1970), 545–53 (high temperature and arrest of growth in Rhodnius).

    Google Scholar 

  21. SALT, R. W. Symp. Soc. exp. Biol., 23 (1969), 331–50 (survival of insects at low temperature: review).

    CAS  PubMed  Google Scholar 

  22. SOMME, L. J. Insect Physiol., 12 (1966), 1069–83 (effect of temperature and anoxia on supercooling in Ephestia).

    Article  Google Scholar 

  23. S0MME, L. Norsk ent. Tiddsskr., 16 (1969), 107–11 (mannitol and glycerol in over- wintering Aphid eggs).

    Google Scholar 

  24. WATSON, J. A. L. et al. J. insect Physiol., 17 (1971), 1705–9 (water sacs in Hodotermes).

    Article  Google Scholar 

  25. WIGGLESWORTH, V. B. J. exp. Biol., 32 (1955), 649–63 (high temperature and arrested growth in Rhodnius).

    CAS  Google Scholar 

  26. WINSTON, P. W. et al. Nature, 214 (1967), 383; J. exp. Biol., 50 (1969), 541–6 (water pump in integument of Periplaneta and Schistocerca).

    Article  ADS  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 1972 V. B. Wigglesworth

About this chapter

Cite this chapter

Wigglesworth, V.B. (1972). Water and Temperature. In: The Principles of Insect Physiology. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-5973-6_14

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-5973-6_14

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-0-412-24660-9

  • Online ISBN: 978-94-009-5973-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics