Skip to main content

Thermal stability and phytoplankton distribution

  • Conference paper
Perspectives in Southern Hemisphere Limnology

Part of the book series: Developments in Hydrobiology ((DIHY,volume 28))

Abstract

Thermal stability is the potential of water columns to mix, and has long been known to fundamentally influence the vertical and temporal distribution of phytoplankton. Essentially this is because it indirectly controls the amount of light available to phytoplankton.

Under stable conditions of strong temperature gradients algal species (or assemblages of associated species) distribute vertically because they have sufficient time to exploit the attenuated light field at their preferred depths. This encourages a species diversity which, in the Southern Hemisphere, is especially exemplified by the extremely stable conditions under the permanent ice of Antarctic lakes.

In other lakes stability commonly encourages growth of, blue-green algae by permitting their positive buoyancy to place them in optimal light conditions, and by inhibiting the resuspension of competing non-buoyant species. Analogous patterns occur with motile species (Dinophyceae, Cryptophyceae, etc.), and with non-motile forms whose physiological adaptations allow growth to large sub-surface peaks at preferred depths. These sub-surface maxima can be upwelled to the water surface, in a manner controlled by thermal stability and vertical shear, and horizontally transported to give large variations in horizontal distribution.

At all latitudes diel stability cycles in surface waters can affect physiological properties important for growth, and in some circumstances can dominate the phytoplankton dynamics and distribution.

Such short-term stability events merge with longer-term (e.g. annual) events with no conceptual distinction. A modern way to integrate this continuity is by scaling using spectral analysis of cyclicity. This allows biological variables (algal biomass, numbers, production) to be stochastically related to indices of stability (e.g. Brunt-Väisälä frequency).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Abbott, M. R., K. L. Denman, T. M. Powell, P. S. Richerson. R. C. Richards & C. R. Goldman. 1984. Mixing and the dynamics of the deep chlorophyll maximum in Lake Tahoe. Limnol. Oceanogr. 29: 862 – 878.

    Article  CAS  Google Scholar 

  • Baxter, R. M., M. V. Prosser, J. F. Talling & R. B. Wood, 1965. Stratification in tropical African lakes at moderate altitudes (1500 to 200 m). Limnol. Oceanogr. 10: 510 – 520.

    Article  Google Scholar 

  • Berman, T. & W. Rodhe, 1971. Distribution and migration of Peridiniumin Lake Kinneret. Mitt. int. Ver. Limnol. 19: 266 – 276.

    Google Scholar 

  • Birge, E. A., 1916. The work of the wind in warming a lake. Trans. Wis. Acad. Sci. Arts Lett. 18: 341 – 391.

    Google Scholar 

  • Burns, C. W. & S. F. Mitchell, 1974. Seasonal succession and vertical distribution of phytoplankton in Lake Hayes and Lake Johnson. N.Z. J. Mar. Freshwat. Res. 14: 189 – 204.

    Article  CAS  Google Scholar 

  • Cogdell, R. J., 1978. Carotenoids in photosynthesis. Phil. Trans. r. Soc., Land. B. 284: 569–579.

    Article  CAS  Google Scholar 

  • Cohen, Y., W. F. Krumbein & M. Shilo, 1977a. Solar Lake (Sinai). 2. Distribution of photosynthetic microorganisms and primary production. Limnol. Oceanogr. 22: 609 – 620.

    Article  CAS  Google Scholar 

  • Cohen, Y., W. E. Krumbein & M. Shilo, 1977b. Solar Lake (Sinai). 3. Bacteria distribution and production. Limnol Oceaogr. 22: 621 – 634.

    Article  CAS  Google Scholar 

  • Cole, G. A., 1975. Textbook of Limnology. C. V. Mosby, St Louis, 283 pp.

    Google Scholar 

  • Fee, E. J., 1973. Modelling primary production in water bodies: A numerical approach that allows vertical inhomogeneities. J. Fish. Res. Bd Can. 30: 1469–1473.

    Article  Google Scholar 

  • Fee, E. J., 1976. The vertical and seasonal distribution of chlorophyll in lakes of the Experimental Lakes Area, north-west Ontario: Implications for primary production estimates. Limnol. Oceanogr. 21: 767 – 783.

    Article  Google Scholar 

  • Ford, D. E. & H. Stefan, 1980. Stratification variability in three morphometrically different lakes under identical meteorological forcing. Water Res. Bull. 16: 243 – 247.

    Google Scholar 

  • Forsyth, D. J. & I. D. McCallum, 1983. Seasonal distribution of Polypedilum pavidus(Chironomidae: Diptera) in a eutrophic lake in New Zealand. Arch. Hydrobiol. 97: 134 – 142.

    Google Scholar 

  • Frempong, E., 1981. Diel variation in the abundance, vertical distribution and species composition of phytoplankton in a eutrophic English lake. J. Ecol. 69: 919 – 939.

    Article  Google Scholar 

  • Ganf, G. G., 1972. The regulation of net primary production in Lake George, Uganda, East Africa. In Z. Kajak & A. Hillbricht-Ilkowska (eds). Productivity problems of freshwaters. PWN Polish Sci. Publ. Warszawa-Krakow: 693 – 708.

    Google Scholar 

  • Ganf, G. G., 1974, Diurnal mixing and the vertical distribution of phytoplankton in a shallow equatorial lake (Lake George, Uganda). J. Ecol. 62: 611–629.

    Article  Google Scholar 

  • Ganf, G. G. & R. L. Oliver, 1982. Vertical separation of light and available nutrients as a factor causing replacement of the green algae by blue-green algae in the plankton of a stratified lake. J. Ecol. 70: 829 – 844.

    Article  Google Scholar 

  • George, D. G., 1983. Interrelations between the vertical distribution of Daphnia and chlorophyll-a in two large limnetic enclosures. J. Plankton Res. 5: 457–475.

    Article  CAS  Google Scholar 

  • George, D. G. & S. I. Heaney, 1978. Factors influencing the spatial distribution of phytoplankton in a small productive lake. J. Ecol. 66: 133 – 155.

    Article  CAS  Google Scholar 

  • Happey, C. M., 1970. The effects of stratification on phytoplanktonic diatoms in a small body of water. J. Ecol. 58: 635 – 651.

    Article  Google Scholar 

  • Happey-Wood, C., 1976a. Vertical migration patterns in phytoplankton of mixed species composition. Br. phycol. J. 11: 355 – 369.

    Article  Google Scholar 

  • Happey-Wood, C., 1976b. Influence of stratification on the growth of planktonic Chlorophyceae in a small body of water. Br. phycol. J. 11: 371 – 381.

    Article  Google Scholar 

  • Harris, G. P., 1983. Mixed layer physics and phytoplankton populations. Studies in equilibrium and non-equilibrium ecology. In F. E. Round & D. J. Chapman (eds). Progress in Phycological Research v. 2. Elsevier, Amsterdam.

    Google Scholar 

  • Healey. F. P., 1979. Short-term responses of nutrient deficient algae to nutrient addition. J. Phycol. 15: 289 – 299.

    Article  Google Scholar 

  • Heaney, S. L, 1976. Temporal and spatial distribution of the dinoflagellate Ceratium hirundinellaO. F. Müller within a small productive lake. Freshwat. Biol. 6: 531 – 542.

    Article  Google Scholar 

  • Heaney, S. I. & J. F. Tolling, 1980. Dynamic aspects of dinoflagellate distribution patterns in a small productive lake. J. Ecol. 68: 75 – 94.

    Article  Google Scholar 

  • Hodgkiss, I. J. & L. T. H. Chan, 1976. Studies on Plover Cove Reservoir, Hong Kong. IV. The composition and spatial distribution of the crustacean zooplankton. Freshwat. Biol. 6: 301 – 317.

    Article  Google Scholar 

  • Horne, A. J. & R. C. Wrigley, 1975. The use of remote sensing to detect non wind influences on planktonic blue-green algal distribution. Verh. int. Ver. Limnol. 19: 784 – 790.

    Google Scholar 

  • Humphries, S. E. & J. Imberger, 1983. The influence of the internal structure and dynamics of Burrinjuck Reservoir on phytoplankton blooms. Rep. No. ED-82-023. Centre for Water Research. Univ. Western Australia. 89 pp.

    Google Scholar 

  • Hutchinson, G. E., 1967. A Treatise on Limnology, v. 11. Introduction to Lake Biology and the Limnoplankton. John Wiley, N.Y. 1111 pp.

    Google Scholar 

  • Jones, J. G. & B. M. Simon, 1980. Variability in microbiological data from a stratified eutrophic lake. J. appl. Bact. 49: 127 – 135.

    Google Scholar 

  • Lewis, M. R. & J. C. Smith, 1983. A small volume, short incubation time method for measurement of photosynthesis as a function of incident irradiance. Mar. Ecol. Prog. Ser. 13: 99 – 102.

    Article  CAS  Google Scholar 

  • Lewis, W. M. Jr, 1973. The thermal regime of Lake Lanao (Philippines) and its theoretical implications for tropical lakes. Limnol. Oceanogr. 18: 200 – 217.

    Article  Google Scholar 

  • Lewis, W. M. Jr, 1978. Dynamics and succession of the phytoplankton in a tropical lake: Lake Lanao, Philippines. J. Ecol. 66: 849 – 881.

    Article  Google Scholar 

  • Lund, J. W. G.,1954. The seasonal cycle of the plankton diatom Melosira italica (Ehr) Kutz. subsp. subarctica O. Müll. J. Ecol. 42: 151–179.

    Article  Google Scholar 

  • Marra, J. & K. Heinemann, 1982. Photosynthesis response by phytoplankton to sunlight variability. Limnol. Oceanogr. 27: 1141 – 1153.

    Google Scholar 

  • Maulood, B. R., G. C. F. Hinton & A. D. Bone, 1978. Diurnal variation of phytoplankton in Loch Lomond. Hydrobiologia 58: 99 – 117.

    Article  CAS  Google Scholar 

  • McColl, R. H. S, 1972. Chemistry and trophic status of seven New Zealand lakes. N.Z. J Mar. Freshwat. Res. 6: 399 – 447.

    Article  CAS  Google Scholar 

  • Mitchell, S. F., 1971. Phytoplankton productivity in Tomahawk Lagoon, Lake Waipori, and Lake Mahinerangi. N.Z. Min. Agric. Fish., Fish. Res. Bull. 3. 87 pp.

    Google Scholar 

  • Mitchell, S. F. & C. W. Burns, 1981. Phytoplankton photosynthesis and its relation to standing crop and nutrients in two warm monomictic South Island lakes. N.Z. J Mar. Freshwat. Res. 15: 51 – 67.

    Article  CAS  Google Scholar 

  • Paerl, H. W. & P. E. Kellar, 1978. Optimization of N2 fixation in O2-rich waters. In M. W. Louth & J. A. R. Miles (eds). Microbial Ecology Springer-Verlag, Berlin, Heidelberg.

    Google Scholar 

  • Patterson, J. C., P. F. Hamblin & J. Imberger, 1984. Classification and dynamic simulation of the vertical density structure of lakes. Limnol. Oceanogr. 29: 845 – 861.

    Article  Google Scholar 

  • Platt, T., 1978. Spectral analysis of spatial structure in phytoplankton populations. In J. H. Steele(ed.), Spatial Distribution of Phytoplankton. Proc. NATO Conference on the Sea. Erice, Italy, 1977.

    Google Scholar 

  • Platt, T. & K. L. Denman, 1975. Spectral analysis in ecology Ann. Rev. Ecol. Syst. 6: 189 – 210.

    Article  Google Scholar 

  • Platt, T., C. L. Gellegos & N. G. Harrison, 1980. Photoinhibition of photosynthesis in natural assemblages of marine phytoplankton. J. mar. Res. 38: 687 – 701.

    Google Scholar 

  • Prézelin, B. B., 1981. Light reactions in photosynthesis. In T. Platt (ed.), Physiological basis of phytoplankton ecology. Can. Bull. Fish. aquat. Sci. No. 210: 1 – 43.

    Google Scholar 

  • Quay, P. D., W. S. Broecker, R. H. Hesslein & D. W. Schindler, 1980. Vertical diffusion rates determined by tritium tracer experiments in the thermocline and hypolimnion of two lakes. Limnol. Oceanogr. 25: 201 – 218.

    Article  CAS  Google Scholar 

  • Reynolds, C. S., 1976. Sinking movements of phytoplankton indicated by a simple trapping method. II. Vertical activity ranges in a stratified lake. Br. phycol. J. 11: 293 – 303.

    Article  Google Scholar 

  • Reynolds, C. S., 1983. Growth-rate responses of Volvox aureusEhrenb (Chlorophyta, Volvocales) to variability in the physical environment. Br. phycol. J. 18: 433 – 442.

    Article  Google Scholar 

  • Reynolds, C. S., 1984. Phytoplankton periodicity: the interaction of form, function and environmental variability. Freshwat. Biol. 14: 111 – 143.

    Article  Google Scholar 

  • Reynolds, C. S. & Walsby, A. E., 1975. Water Blooms. Biol. Rev. 50: 437 – 481.

    Article  CAS  Google Scholar 

  • Richerson, P. J., T. M. Powell, M. R. Leigh-Abbott & J. A. Coil, 1978. Spatial heterogeneity in closed basins. In J. H. Steele (ed.), Spatial Distribution of Phytoplankton. Proc. NATO Conference on the Sea, Erice, Italy, 1977: 239 – 276.

    Google Scholar 

  • Riley, G. A., 1942. The relationship of vertical turbulence and spring diatom flowerings. J. mar. Res. 5: 67 – 87.

    Google Scholar 

  • Robarts, R. D., 1984. Factors controlling primary production in a hypertrophic lake (Hartbeespoort Dam, South Africa). J. Plankton Res. 6: 91–105.

    Article  CAS  Google Scholar 

  • Robarts, R. D., P. J. Ashton, J. A. Thornton, H. J. Taussig & L. M. Sephton, 1982. Overturn in a hypereutrophic, warm monomictic impoundment (Hartbeespoort Dam, South Africa). Hydrobiologia 97: 209 – 224.

    Article  CAS  Google Scholar 

  • Schmidt, W., 1928. Über Temperatur and Stabilitätsverhältnisse von Seen. Geogr. Ann. 10: 145 – 177.

    Article  Google Scholar 

  • Serruya, S., 1975. Wind, water temperature and motions in Lake Kinneret: general pattern. Verh. int. Ver. Limnol. 19: 73 – 87.

    Google Scholar 

  • Serruya, C. & U. Pollingher, 1971. An attempt at forecasting the Peridinium bloom in Lake Kinneret (Lake Tiberius). Mitt.int. Ver. Limnol. 19: 277–291.

    Google Scholar 

  • Smayda, T. S., 1970. The suspension and sinking of phytoplankton in the sea. Oceanogr. Mar. biol. Rev. 8: 353 – 414.

    Google Scholar 

  • Smayda, T. D. & B. M. Boleyn, 1965. Experimental observations of the floating of marine diatoms. I. Thalasirosira rotula, Thalasirosirac.f. nanaand Nitzschia seriata. Limnol. Oceanogr. 10: 499 – 509.

    Article  Google Scholar 

  • Spigel, R. H. & J. Imberger, 1980. The classification of mixed-layer dynamics in lakes of small to medium size. J. Phys. Oceanogr. 10: 1104 – 1121.

    Article  Google Scholar 

  • Steele, J. H. (ed.), 1978a. Proceedings of the NATO Conference on Marine Biology. Erice, Italy, 1977. pp. 470.

    Google Scholar 

  • Steele, J. H., 1978b. Some comments on plankton patches. In J. H. Steele (ed.), Spatial Patterns in Plankton Communities. Proc. NATO Conference on the sea, Erice, Italy, 1977: 1 – 6.

    Google Scholar 

  • Sverdrup, H. U., 1953. On the conditions for the vernal blooming of phytoplankton. 1. Cons. perm. int. Explor. Mer 18: 287 – 295.

    Google Scholar 

  • Talling, J. F., 1957a. Photosynthetic characteristics of some freshwater plankton diatoms in relation to underwater radiation. New Phytol. 56: 29 – 50.

    Article  Google Scholar 

  • Talling, J. F., 1957b. Diurnal changes of stratification and photosynthesis in some tropical African waters. Proc. Roy. Soc. B 147: 57 – 83.

    Article  CAS  Google Scholar 

  • Talling, J. F., 1971. The underwater light climate as a controlling factor in the production ecology of freshwater phytoplankton. Mitt. int. Ver. Limnol. 19: 214–243.

    Google Scholar 

  • Tilzer, M. M., 1973. Diurnal periodicity in the phytoplankton assemblage of a high mountain lake. Limnol. Oceanogr. 18: 15 – 30.

    Article  Google Scholar 

  • Tilzer, M. M. & K. Schwarz, 1976. Seasonal and vertical patterns of phytoplankton light adaptation in a high mountain lake. Arch. Hydrobiol. 77: 488 – 504.

    CAS  Google Scholar 

  • Vincent, W. F., 1981. Production strategies in Antarctic inland waters: Phytoplankton ecophysiology in a permanently ice-covered lake. Ecology 62: 1215 – 1224.

    Article  Google Scholar 

  • Vincent, W. F., 1982. Autecology of an ultraplanktonic shade alga in Lake Tahoe. J. Phycol. 18: 226 – 232.

    Article  CAS  Google Scholar 

  • Vincent, W. F., 1983. Phytoplankton production and winter mixing: Contrasting effects in two oligotrophic lakes. J. Ecol. 71: 1 – 20.

    Article  CAS  Google Scholar 

  • Vincent, W. F. & C. R. Goldman, 1980. Evidence for algal heterotrophy in Lake Tahoe, California-Nevada. Limnol. Oceanogr. 25: 89 – 99.

    Article  CAS  Google Scholar 

  • Vincent, W. F., P. J. Neale & P. J. Richerson, 1984. Photoinhibition: Algal responses to bright light during diel stratification and mixing in a tropical alpine lake. J. Phycol. 20: 201 – 211.

    Article  CAS  Google Scholar 

  • Vincent, W. F. & C. L. Vincent, 1982. Factors controlling phytoplankton production in Lake Vanda (77°S). Can. J. Fish. squat. Sci. 39: 1602 – 1609.

    Article  Google Scholar 

  • Viner, A. B., 1970a. Hydrobiology of Lake Volta, Ghana. I.Stratification and circulation of water. Hydrobiologia 3: 209 – 229.

    Article  Google Scholar 

  • Viner, A. B., 1970b. Hydrobiology of Lake Volta, Ghana. II. Some observations on biological features associated with the morphology and water stratification. Hydrobiologia 35: 230 – 248.

    Article  Google Scholar 

  • Viner, A. B., 1973. Responses of a mixed phytoplankton population to nutrient enrichments of ammonia and phosphate, and some associated ecological implications. Proc. R. Soc., Lond. B. 183: 351–370.

    Article  CAS  Google Scholar 

  • Viner, A. B., 1984a. Resistance to mixing in New Zealand lakes. N.Z. J. Mar. Freshwat. Res. 18: 73 – 82.

    Article  Google Scholar 

  • Viner, A. B., 1984b. Laboratory experiments on the effect of light and temperature on the uptake of nutrients by Lake Rotongaio phytoplankton. N.Z. J. Mar. Freshwat. Res. 18: 323 – 340.

    Article  CAS  Google Scholar 

  • Viner, A. B., 1985. Conditions stimulating planktonic N2 fixation in Lake Rotongalo (North Island, New Zealand). N.Z. J. Mar. Freshwat. Res. 19: 146 – 152.

    Article  Google Scholar 

  • Viner, A. B. & L. Kemp, 1983. The effect of vertical mixing upon the phytoplankton of Lake Rotongaio (Sept. 1979 to Jan. 1981). N.Z. J. Mar. Freshwat. Res. 17: 407 – 422.

    Article  CAS  Google Scholar 

  • Viner, A. B. & I. R. Smith, 1973. Geographical, historical and physical aspects of Lake George. Proc. R. Soc., Land. B. 184: 235 – 270.

    Article  Google Scholar 

  • Vollenweider, R. A., 1965. Calculation models of photosynthesis — Depth curves and some implications regarding day rate estimates in primary production measurements. In C. R. Goldman (ed.). Primary Productivity in Aquatic environments. Proc. IBP PF Symposium, Pallanza 1965. Mem. Ist. Ital. ldrobiol. Suppl. 425 – 457.

    Google Scholar 

  • Walsby, A. E. & C. S. Reynolds, 1980. Sinking and floating. In I. M. Morris (ed.), The physiological ecology of phytoplankton. Studies in Ecology, 7. Berkeley & Los Angeles, Univ. California Press: 371 – 412.

    Google Scholar 

  • Wetzel, R. G.,1975. Limnology, W. B. Sounders, Philadelphia. 743 pp.

    Google Scholar 

  • White, E., M. Downes, M. Gibbs, L. Kemp, L. Mackenzie & G. Payne, 1980. Aspects of the physics, chemistry and phyto¬plankton biology of Lake Taupo. N.Z. J. Mar. Freshwat. Res. 14: 139 – 148.

    Article  CAS  Google Scholar 

  • Wiseman, S. W., G. H. M. Jaworski & C. S. Reynolds, 1983. Variability in sinking rate of the freshwater diatom Asterionella formosaHass.: The influence of the excess density of colonies. Br. phycol. J. 18: 425 – 432.

    Article  Google Scholar 

  • Woods, J. D. & R. Onken, 1982. Diurnal variation and primary production in the ocean — preliminary results of a Lagrangian ensemble model. J. Plankton Res. 4: 735 – 756.

    Article  Google Scholar 

  • Zimmerman, M. J., M. C. Waldron, S. P. Schreiner, M. L. Freedman, P. A. Giamatteo, J. J. Hains, B. J. Speziale & J. E. Schindler, 1981. High frequency energy exchange and mixing dynamics of lakes. Verh. int. Ver. Limnol. 21: 88 – 93.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

B. R. Davies R. D. Walmsley

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Dr W. Junk Publishers

About this paper

Cite this paper

Viner, A.B. (1985). Thermal stability and phytoplankton distribution. In: Davies, B.R., Walmsley, R.D. (eds) Perspectives in Southern Hemisphere Limnology. Developments in Hydrobiology, vol 28. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-5522-6_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-5522-6_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8937-1

  • Online ISBN: 978-94-009-5522-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics