Skip to main content

Microbial ecology and acidic pollution of impoundments

  • Chapter
Microbial Processes in Reservoirs

Part of the book series: Developments in Hydrobiology ((DIHY,volume 27))

Abstract

Many impoundments are becoming acidified by acid precipitaion (AP) and acid mine drainage (AMD). Because of its more dilute constitution, AP is not expected to significantly affect microbial processes in mesotrophic or eutrophic impoundments, although some reduction in heterotrophic activity might be expected in oligotrophic situations. AMD can cause extensive alteration of the microbial community and associated functions. The input of sulfate in the pollution tends to enhance bacterial sulfate reduction in the anaerobic waters and sediments of the impoundment. Sulfate reduction generates carbonate alkalinity which can effectively neutralize the acid pollution if the alkalinity is not consumed by CO2 fixation during reoxidation of the reduced sulfur species. Presence of reduced iron precipitates the sulfides preventing diffusion into the oxic zones. Bacterial sulfate reduction represents an important homeostatic mechanism in acidified impoundments, and should be explored as a possible management tool for impoundments acidified by AP or AMD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Alexander, M., 1977. Introduction to Soil Microbiology, 2nd ed., J. Wiley & Sons, NY, 467 pp.

    Google Scholar 

  • Alexander, M., 1980. Effects of acid precipitation on biochemical activities in soil. In Drablos, D. &Tollan, A., (eds.), Proc. Internat. Conf. Ecological Impact of Acid Precipitation. Sandefjord, Norway. SNSF Project: 47–52.

    Google Scholar 

  • Aimer, B., Dickson, W., Ekstrom, C., Hornstrom, E. & Miller, U., 1974. Effects of acidification on Swedish lakes. Ambio 3:30–36.

    Google Scholar 

  • Aimer, B., Dickson, W., Ekstrom, C., Hornstrom, E., & Miller, U., 1978. Sulfur pollution and the aquatic ecosystem. In Nriagu, J., (ed.), Sulfur in the environment. Part II: Ecological impacts. John Wiley & Sons, NY: 273–311.

    Google Scholar 

  • Babich, H. & Stotzky, G., 1977. Effect of cadmium on fungi and on interactions between fungi and bacteria in soil: Influence of clay minerals and pH. Appl. environ. Microbiol. 33:1059–1066.

    PubMed  CAS  Google Scholar 

  • Baker, K.H. & Mills, A.L., 1982. Determination of the number of respiring Thiobacillus ferrooxidans cells in water samples by using combined fluorescent antibody-2-(p-iodophenyl)3-(p-nitrophenyl)-5-phenyltetrazolium chloride staining. Appl. environ. Microbiol. 43:338–344.

    PubMed  CAS  Google Scholar 

  • Ben-Yaakov, S., 1973. pH Buffering of pore water of recent anoxic marine sediments. Limnol. Oceanogr. 18:86–94.

    Article  CAS  Google Scholar 

  • Berner, R.A., Scott, M.R., Thomlinson, C., 1970. Carbonate alkalinity in the pore waters of anoxic marine sediments. Limnol. Oceanogr. 15:544–549.

    Article  CAS  Google Scholar 

  • Bertrand, D., 1963. Aluminum - a dynamic trace element for Aspergillus niger. Compt. Rend. 257:3057–3059.

    CAS  Google Scholar 

  • Bhuiya, M.R.H. & Cornfield, A.H., 1974. Incubation study of effect of pH on nitrogen mineralization and nitrification in soils treated with 1000 ppm lead and zinc oxides. Environ. Pollut. 7:161–164.

    Article  CAS  Google Scholar 

  • Bitton, G. & Freihofer, V., 1978. Influence of extracellular polsaccharides on the toxicity of copper and cadmium toward Klebsiella aerogenes. Microb. Ecol. 4:119–125.

    Article  CAS  Google Scholar 

  • Bollag, J.-M. & Barabasz, W., 1979. Effect of heavy metals on the denitrification process in soil. J. environ. Qual. 8:196–201.

    Article  CAS  Google Scholar 

  • Bunemann, von G., Klosterkotter, W. & Ritzerfeld, W., 1963. Effects of inorganic dusts on microorganisms. Arch. Hyg. Bakteriol. 147:58–65.

    PubMed  CAS  Google Scholar 

  • Campbell, R.S., Lind, O.T., Harp, G.L., Geiling, W.T. & Letter, J.E., Jr., 1965. Water pollution studies in acid strip-mine lakes: Changes in water quality and community structure associated with aging. Proc. Symp. Acid Mine Drainage Res., Mellon Inst., Pittsburgh, Pa.: 188–198.

    Google Scholar 

  • Carpenter, L.V. & Herndon, L.K., 1933. Chemical analysis of acid mine drainage. West Virginia Univ. Eng. Exper. Sta. Res. Bull. No. 10. Morgantown.

    Google Scholar 

  • Carpenter, J.M., Odum, W.E. & Mills, A.L., 1983. Leaf litter decomposition in a reservoir affected by acid mine drainage. Oikos 41:165–172.

    Article  Google Scholar 

  • Coesel, P., Kwakkestein, R., & Verschoor, A., 1978. Oligotrophication and eutrophication tendencies in some Dutch moorland pools, as reflected in their desmid flora. Hydrobiologia 61:21–31.

    Article  Google Scholar 

  • Cook, R.B., 1981. The biogeochemistry of sulfur in two small lakes. Ph.D. thesis, Columbia Univ. 246 pp.

    Google Scholar 

  • Council on Environmental Quality, 1981. Environmental Trends. US Government Printing Office. 346 pp.

    Google Scholar 

  • Dillon, P., Yan, N.D., Scheider, W., & Conroy, N., 1979. Acidic lakes in Ontario: Characterization, extent, and responses to base and nutrient addition. Arch. Hydrobiol. 13:317–336.

    CAS  Google Scholar 

  • Gadd, G.M. & Griffiths, A.J., 1978. Microorganisms and heavy metal toxicity, Microb. Ecol. 4:279–387.

    Article  Google Scholar 

  • Galloway, J.N. & Cowling, E.B., 1978. The effects of precipitation on aquatic and terrestrial ecosystems: A proposed precipitation chemistry network. APCA Jour. 28:229–235.

    CAS  Google Scholar 

  • Galloway, J.N., Schofield, C.L., Peters, N.E., Hendrey, G.R. & Altwicker, E.R., 1983. Effect of atmospheric sulfur on the composition of three Adirondack lakes. Can. J. Fish. Aquat.Sci. 40:799–806.

    Article  CAS  Google Scholar 

  • Goto, K., Tanemura, T. & Kawamura, S., 1978. Effect of acid mine drainage on the pH of Lake Toya, Japan. Water Res. 12:735–740.

    Article  CAS  Google Scholar 

  • Gorham, E., 1955. On the acidity and salinity of rain. Geochim. Cosmochim. Acta 7:231–239.

    Article  CAS  Google Scholar 

  • Grahn, O., 1980. Fishkills in two moderately acid lakes due to high aluminum concentrations. In D. Drablos & A. Tollan (eds.), Proc. Internat. Conf. Ecological Impact of Acid Precipitation. Sandefjord, Norway. SNSF Project: 310–312.

    Google Scholar 

  • Grahn, O., Hultberg, H. & Landner, L., 1974. Oligotrophication - a self-accelerating process in lakes subject to excessive supply of acid substances. Ambio 3:93–94.

    Google Scholar 

  • Gunnison, D., 1981. Microbial Processes in recently impounded reservoirs. ASM News 47:527–531.

    Google Scholar 

  • Guthrie, R.K., Cherry, D.S. & Singleton, F.L., 1978. Responses of heterotrophic bacterial populations to pH changes in coal ash effluent. Water Resour. Bull. 4:803–808.

    Google Scholar 

  • Hackney, C.R. & Bissonette, G.K., 1978. Recovery of indicator bacteria in acid mine streams. J. Water Pollut. Contr. Fed. 50:775–780.

    Google Scholar 

  • Hanssen, J.E., Rambaek, J.P., Semb, A. & Steinnes, E., 1980. Atmospheric deposition of trace elements in Norway. In D. Drablos & A. Tollan (eds.), Proc. Internat. Conf. Ecological Impact of Acid Precipitation. Sandefjord, Norway. SNSF Project: 116–118.

    Google Scholar 

  • Haines, T.A., 1981. Acidic precipitation and its consequences for aquatic ecosystems: A review. Trans. Am. Fish. Soc. 110:669–707.

    Article  CAS  Google Scholar 

  • Hendry, G.R., Baalsrud, K, Traaen, T., Laake, M. & Raddum, G., 1976. Acid precipitation: Some hydrobiological changes. Ambio 5:224–227.

    Google Scholar 

  • Hendrey, G.R., Galloway, J.N., Norton, S.A., Schofield, C.L., Shaffer, P.W. & Burns, D.A., 1980. Geochemical and hydrochemical sensitivity of the eastern United States to acid precipitation. EPA–600/3–80–024.

    Google Scholar 

  • Herlihy, A.T. & Mills, A.L., 1985. Sulfate reduction in freshwater sediments receiving acid mine drainage. Appl. environ. Microbiol. 49:719–186.

    Google Scholar 

  • Hutchinson, G.E., 1975. A treatise on limnology, Vol. 1, Part 2. Chemistry of lakes. J. Wiley & Sons, NY 1015 pp.

    Google Scholar 

  • Imberger, J. & Patterson, J.C., 1981. A dynamic reservoir simulation model - DYRESM5 In Fischer, H.B. (ed.), Transport models for inland and coastal waters. Academic Press, NY: 310–361.

    Google Scholar 

  • Jensen, V., 1977. Effects of lead on biodegradation of hydrocarbons in soil. Oikos 28:220–224.

    Article  CAS  Google Scholar 

  • Joseph, J.M. & Shay, D.E., 1952. Viability of Escherichia coil in acid mine water. Am. J. Pub. Health 42:795.

    Article  PubMed  CAS  Google Scholar 

  • Kelly, C.A., Rudd, J., Cook, R.B. & Schindler, D.W., 1982. The potential importance of bacterial processes in regulating rate of lake acidification. Limnol. Oceanogr. 27:868–882.

    Article  CAS  Google Scholar 

  • Koryak, M., Stafford, L.J. & Montgomery, W.H., 1979. The limnolgical response of a West Virginia multipurpose impoundment to acid inflows. Water Resour. Res. 15:929–934.

    Article  CAS  Google Scholar 

  • Kilham, P., 1982. Acid precipitation: Its role in the alkalization of a lake in Michigan. Limnol. Oceanogr. 27:856–867.

    Article  CAS  Google Scholar 

  • King, D.L., Simler, J.J., Decker, C.S. & Ogg, C.W., 1974. Acid strip mine lake recovery. WPCF Journal 46:2301–2315.

    CAS  Google Scholar 

  • Kwiatkowski, R. & Roff, J, 1976. Effects of acidity in the phytoplankton and primary production of selected northern Ontario lakes. Can. J. Bot. 54:2546–2561.

    Article  CAS  Google Scholar 

  • Lawrey, J.D., 1977a. The relative decomposition potential of habitats variously affected by surface coal mining. Can. J. Bot. 55:1544–1552.

    Article  CAS  Google Scholar 

  • Lawrey, J.D., 1977b. Soil fungal populations and soil respiration in habitats variously influenced by coal strip-mining. Environ. Pollut. 14:195–205.

    Article  CAS  Google Scholar 

  • Leivestad, H., Hendrey, G.R., Muniz, I. & Snekvik, E., 1976. Effects of acid precipitation on freshwater organisms. In F. Braekke (ed.), Impact of acid precipitation on forest and freshwater ecosystems in Norway. Acid Precipitation - Effects on Forest and Fish Project, Research Report 6, Aas, Norway: 86–111.

    Google Scholar 

  • Matsuda, K. & Nagata, T., 1958. Effects of aluminum concentration on growth of microorganisms. Nippon Dojo-Hiryogaku Zasshi 28:405–408.

    CAS  Google Scholar 

  • McCoy, B. & Dugan, P.R., 1968. The activity of microorganisms in acid mine water. II. The relative influence of iron, sulfate, and hydrogen ions on the microflora of a non-acid stream. Proc. Symp. on Coal Mine Drainage Res., 2nd. Mellon Inst., Pittsburgh: 64–79.

    Google Scholar 

  • McFee, W.M., Kelley, J.M. & Beck, R.H., 1977. Acid precipitation effects on soil pH and base saturation of exchange sites. Water Air Soil Pollut. 7:401–408.

    Article  CAS  Google Scholar 

  • Mikkelsen, J.P., 1974. Effect of lead on the microbiological activity in soils. Tidsskr. Planteavl. 78:509–516.

    CAS  Google Scholar 

  • Mills, A.L., 1985. Acid mine waste drainage: Microbial impact on the recovery of soil and water ecosystems. In R.L. Tate and D. Klein (eds.). The Microbiology of Reclamation Processes. Marcel Dekker, Inc. pp. 35–81.

    Google Scholar 

  • Mills, A.L. & Colwell, R.R., 1977. Microbiological effects of metal ions in Chesapeake Bay water and sediment. Bull. environ. Contam. Toxicol. 18:99–103.

    Article  PubMed  CAS  Google Scholar 

  • Mills, A.L. & Wassel, R.A., 1980. Aspects of diversity measurement for microbial communities. Appl. environ. Microbiol. 40:578–586.

    PubMed  CAS  Google Scholar 

  • Mortimer, C.H., 1971. Chemical exchanges between sediments and water in the Great Lakes - speculations on probable regulatory mechanisms. Limnol Oceanogr. 16:387–404.

    Article  CAS  Google Scholar 

  • Norwegian State Pollution Control Authority. 1983. Environmental Monitoring Report 108/83.

    Google Scholar 

  • Raddum, G., Holbaek, A., Lomsland, E. & Johnsen, T., 1980. Phytoplankton and zooplankton in acidified lakes in south Norway. In Drablos D. & Tollan A., (eds.), Proc. Internat. Conf. Ecological Impact of Acid Precipitation. Sandefjord, Norway. SNSF Project: 332–333.

    Google Scholar 

  • Rastetter, E.B., Hornberger, G.M., Mills, A.L. & Herlihy, A.T., 1984. Mathematical model of vertical stratification in a lake receiving acid mine drainage. Annual Meeting of the American Geophysical Union.

    Google Scholar 

  • Richards, F.A., 1965. Anoxic basins and fjord. In Riley, J.P. & Skirrow, G. (eds.), A treatise on chemical oceanography, Vol. 1. Academic Press, NY: 611–645

    Google Scholar 

  • Rodhe, W., 1981. Reviving acidified lakes. Ambio 10:195–196.

    Google Scholar 

  • Rogers, T.O. & Wilson, H.A., 1966. pH as a selecting mechanism of the microbial flora in wastewater: Polluted acid mine drainage. J. Water Pollut. Contr. Fed. 38:990.

    CAS  Google Scholar 

  • Root, J., McColl, J. & Niemann, B., 1980. Map of areas potentially sensitive to wet and dry acid deposition in United States. In Drablos, D. & Tollan, A.,. (eds.), Proc. Internat. Conf. Ecological Impact of Acid Precipitation. Sandefjord, Norway. SNSF Project: 128–129.

    Google Scholar 

  • Roth, L.A. & Keegan, D., 1971. Acid injury of Escherichia coll. Can. J. Microbiol. 17:1005–1008.

    CAS  Google Scholar 

  • Scala, G.S., Mills, A.L., Moses, C.O. & Nordstrom, D.K., 1982. Distribution of autotrophic Fe and sulfur oxidizing bacteia in mine drainage from several sulfide deposits measured with the FAINT assay. Abstr. Meet. Am. Soc. Microbiol. N68.

    Google Scholar 

  • Scheider, W. & Dillon, P., 1976. Neutralization of acidified lakes near Sudbury, Ontario. Water Pollut. Res. Canada 11:93–100.

    CAS  Google Scholar 

  • Schindler, D.W. & Turner, M.A., 1982. Biological, chemical and physical responses of lakes to experimental acidification. Water Air Soil Pollut. 18:259–271.

    Article  CAS  Google Scholar 

  • Schindler, D.W., Wagemann, R., Cook, R.B., Ruszczynski, T. & Prokopowich, J., 1980. Experimental acidification of Lake 223, Experimental Lakes Area: Background data and the first three years of acidification. Can. J. Fish. Aquat. Sci. 37:342–354.

    Article  CAS  Google Scholar 

  • Simmons, G.M. & Reed, J.R., 1973. Mussels as indicators of biological recovery zone. J. Water Pollut. Contr. Fed. 45:2480–2492.

    Google Scholar 

  • Sterritt, R.M. & Lester, J.N., 1980. Interactions of heavy metals with bacteria. Sci. Tot. environ. 14:5–7.

    Article  CAS  Google Scholar 

  • Sulochana, C.B., 1952. The effect of microelements on the occurrence of bacteria, actinomycetes and fungi in soil. Proc. Indian. Acad. Sci. B36:19–33.

    Google Scholar 

  • Sunda, W. & Gillespie, P., 1979. The response of a marine bacterium to cupric ion and its use to estimate cupric ion activity in seawater. J. Mar. Res. 37:761–777.

    CAS  Google Scholar 

  • Thornton, K.W., Kennedy, R.H., Carroll, J.H., Walker, W.W., Gunkel, R.C. & Ashby, S., 1980. Reservoir sedimentation and water quality - an heuristic model. Am. Soc. of Civil Engineers symposium on surface water impoundments, Minneapolis, Minn., 2–5 June 1980.

    Google Scholar 

  • Tuttle, J.H., Dugan, P.R., MacMillan, C.B. & Randles, C.I., 1969a. Microbial dissimilatory sulfur cycle in acid mine water. J. Bacteriol. 97:594–602.

    CAS  Google Scholar 

  • Tuttle, J.H., Dugan, P.R. & Randles, C.I., 1969b. Microbial sulfate reduction and its potential utility as an acid mine water pollution abatement procedure. Appl. Microbiol. 17:297–302.

    CAS  Google Scholar 

  • Tuttle, J.H., Randles, C.I. & Dugan, P.R., 1968. Activity of microorganisms on acid mine water. I. Influence of acid mine water on aerobic heterotrophs of a normal stream. J. Bacteriol. 95:1495–1503.

    PubMed  CAS  Google Scholar 

  • United States Geological Survey, 1979. Water Resources Data for Virginia. USGS Water Data Report, Va-79–1. Nat. Tech. Inform. Serv., Springfield, VA.

    Google Scholar 

  • Van Dam, H., Suurmond, G. & ter Braak, C., 1980. The impact of acid precipitation on diatom assemblages and chemistry of Dutch moorland pools. In Drablos D., & Tollan, A. (eds.), Proc. Internat. Conf. Ecological Impact of Acid Precipitation. Sandefjord, Norway. SNSF Project: 298–299.

    Google Scholar 

  • Watanabe, T. & Yasuda, I., 1982. Diatom assemblages in lacustrine sediments of Lake Shibu-ike, Lake Misumi-ike, Lake Naga-ike, Lake Kido-ike in Shiga Highland (Japan) and a new biotic index based on the diatom assemblage for the acidity of lake water. Jpn. J. Limnol. 43:237–245.

    Article  CAS  Google Scholar 

  • Wassel, R.A. & Mills, A.L., 1983. Changes in water and sediment bacterial community structure in a lake receiving acid mine drainage. Microb. Ecol. 9:155–169.

    Article  Google Scholar 

  • Weaver, R.H. & Nash, H.D., 1968. The effects of strip mining on the microbiology of a stream free from domestic pollution. 2nd Symp. Coal Mine Drainage Res. Mellon Inst., Pittsburgh, PA pp. 80–97.

    Google Scholar 

  • Wichlacz, L. & Unz, R.F., 1981. Acidophilic, heterotrophic bacteria of acid mine waters. Appl. environ. Microbiol. 41:1254–1261.

    PubMed  CAS  Google Scholar 

  • Wieder, R.K. & Lang, G.E., 1982. Modification of acid mine drainage in a freshwater wetland. In McDonald, B.R. (eds.), Proceedings of the symposium on wetlands of the unglaciated Appalachian region. West Virginia University, Morgantown.

    Google Scholar 

  • Wilcox, G. & DeCosta, J., 1982. The effect of phosphorous and nitrogen addition on the algal biomass and species composition of an acidic lake. Arch. Hydrobiol. 94:393–424.

    Google Scholar 

  • Wilson, H.A., 1965. The microbiology of strip-mine spoil. West Virginia Univ. Agric. Exp. Sta. Bull. no. 506T.

    Google Scholar 

  • Wright, R.F., Dale, T., Gjessing, E.T., Hendrey, G.R., Henriksen, A., Johannessen, M. & Muniz, I.P., 1976. Impact of acid precipitation on freshwater ecosystems in Norway. Water Air Soil Pollut. 6:483–499.

    Article  CAS  Google Scholar 

  • Yan, N.D., 1979. Phytoplankton community of an acidified, heavy metal-contaminated lake near Sudbury, Ontario: 1973–1977. Water Air Soil Pollut. 11:43–55.

    Article  CAS  Google Scholar 

  • Yan, N.D. & Stokes, P., 1976. The effects of pH on lake water chemistry and phytoplankton in a LaCloche Mountain lake. Water Pollut. Res. Canada 11:127–137.

    CAS  Google Scholar 

  • Yan, N.D. & Stokes, P., 1978. Phytoplankton of an acidic lake, and its responses to experimental alterations of pH. Environ. Cons. 5:93–100.

    Article  CAS  Google Scholar 

  • Zevenhuizen, L.P.T.M., Dolfing, J., Eshuis, E.J. & ScholtenKorselman, I.J., 1979. Inhibitory effects of copper on bacteria related to the free ion concentration. Microb. Ecol. 5:139–146.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Dr. W. Junk Publishers

About this chapter

Cite this chapter

Mills, A.L., Herlihy, A.T. (1985). Microbial ecology and acidic pollution of impoundments. In: Gunnison, D. (eds) Microbial Processes in Reservoirs. Developments in Hydrobiology, vol 27. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-5514-1_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-5514-1_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8933-3

  • Online ISBN: 978-94-009-5514-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics