Skip to main content

Vegetation Dynamics of Prairie Glacial Marshes

  • Chapter
The Population Structure of Vegetation

Part of the book series: Handbook of Vegetation Science ((HAVS,volume 3))

Abstract

All vegetation change can be reduced to one of three basic phenomena, succession, maturation, and fluctuation, or some combination of these. Each of these phenomena is a result of a change in some attribute of one or more of the plant populations comprising the vegetation of an area. Succession ocurs when different populations are present from time to time. Maturation is an increase in the biomass of an area which is the result of a change in the age/size structure of the populations with time. Fluctuations result from changes in the number of individuals or ramets in the populations of an area from year to year.

The contribution of succession, maturation, and fluctuation to the vegetation dynamics of Eagle Lake, a prairie glacial marsh in Iowa, is examined. In those areas where changing water levels and extensive musk-rat damage occur, succession is the most important phenomenon. A knowledge of the life-history characteristics of each species, particularly its establishment requirements, the presence or absence of its seeds in the seed bank, and its life-span, enables successional sequences to be predicted in this marsh. There are short periods where maturation is the major phenomenon causing vegetation change. Fluctuations also occur both in the emergent vegetation and the submerged vegetation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  • Bishop, R.A., Andrews, R.D. and Bridges, R.J. (1979) Marsh management and its relation to vegetation, waterfowl, and muskrats. Proc. Iowa Acad. Sci. 96: 50–56.

    Google Scholar 

  • Braun-Blanquet, J. (1932) Plant Sociology. (Trans. and ed. G.D. Fuller and H.S. Conrad). New York, McGraw-Hill. 439 pp.

    Google Scholar 

  • Braun-Blanquet, J. (1964) Pflanzensoziologie. 3rd Ed. Wien, Springer-Verlag. 865 pp.

    Book  Google Scholar 

  • Buttery, B.R. and Lambert, J.M. (1965) Competition between Glyceria maximaand Phragmites communisin the region of Surlingham Broad. I. The competition mechanism. J. Ecol. 53: 163–181.

    Article  Google Scholar 

  • Clements, F.E. (1916) Plant Succession. Carnegie Institution of Washington, Publ. 242. 512 pp.

    Book  Google Scholar 

  • Clements, F.E. (1936) Nature and structure of the climax. J. Ecol. 24: 252–284.

    Article  Google Scholar 

  • Currier, P.J. (1979) Floristic composition and primary production of the postdrawn vegetation of Eagle Lake marsh, Hancock County, Iowa. M.S. Thesis, Iowa State University, Ames, Iowa.

    Google Scholar 

  • Daubenmire, R.E. (1968) Plant Communities. Harper and Row, New York, 300 pp.

    Google Scholar 

  • Gaudet, J.J. (1977) Natural drawdown on Lake Naivasha, Kenya, and the formation of papyrus swamps. Aquat. Bot. 3: 1–47.

    Article  Google Scholar 

  • Gleason, H.A. (1917) The structure and development of the plant association. Bull. Torrey Bot. Club 44: 463–481.

    Article  Google Scholar 

  • Gleason, H.A. (1927) Further views of the succession concept. Ecology 8: 299–326.

    Article  Google Scholar 

  • Gleason, H.A. (1939) The individualistic concept of the plant association. Amer. Midland Natural. 21: 92–110.

    Article  Google Scholar 

  • Grace, J.B. and Wetzel, R.G. (1981) Habitat partitioning and competitive displacement in cattails (Typha): experimental field studies. Amer. Natur. 188: 453–474.

    Google Scholar 

  • Grootjans, A.P. (1980) Distribution of plant communities along rivulets in relation to hydrology and management. pp. 143–170. In: O. Wilmanns and R. Tüxen (Eds.), Epharmonie, Bericht Internat. Symp. I.V.V. 1979, Vadug, Cramer Verlag.

    Google Scholar 

  • Hall, T.F., Penfound, W.T. and Hess, A.D. (1946) Water level relationships of plants in the Tennessee valley with particular reference to malaria control. J. Tennessee Acad. Sci. 21: 18–59.

    CAS  Google Scholar 

  • Harris, S.W. and Marshall, W. H. (1963) Ecology of water-level manipulations on a northern marsh. Ecology 44: 331–343.

    Article  Google Scholar 

  • Hejny, S. and Husak, S. (1978) Higher plant communities. pp. 22–64. In: D. Dykyjova and J. Kvet, (Eds.), Pond Littoral Ecosystems. Berlin, Springer-Verlag. 464 pp.

    Google Scholar 

  • Iwata, E. and Ishizuka, K. (1967) Plant succession in Hachirigata polder, ecological studies on common reed (Phragmites communis) I. Ecol. Review (Sendai) 17: 37–56.

    Google Scholar 

  • Leck, M.A. and Graveline, K.J. (1979) The seed bank of a fresh-water tidal marsh. Amer. J. Bot. 66: 1006–1015.

    Article  Google Scholar 

  • Lee, J.J. (1980) A conceptual model of marine detrital decomposition and the organisms associated with the process. Adv. Aquat. Microbiol. 2: 257–291.

    CAS  Google Scholar 

  • Lindeman, R.L. (1942) The trophic-dynamic aspect of ecology. Ecology 23: 399–418.

    Article  Google Scholar 

  • Margalef, R. (1963) On certain unifying concepts in ecology. Amer. Natur. 97: 357–374.

    Article  Google Scholar 

  • McIntosh, R.P. (1980) The background and some current problems of theoretical ecology. Synthese 43: 195–255.

    Article  Google Scholar 

  • McIntosh, R.P. (1981) Succession and ecological theory. pp. 10–23. In D.C. West, H.H. Shugart and D.B. Botkin (Eds.), Forest Succession. Springer-Verlag, New York.

    Chapter  Google Scholar 

  • Meeks, R.L. (1969) The effect of drawdown date on wetland succession. J. Wild. Manage. 33: 817–821.

    Article  Google Scholar 

  • Misra, R. (1946) A study in the ecology of low lying lands. Indian Ecologist 1: 27–46.

    Google Scholar 

  • Noble, I. R. and Slatyer, R.O. (1980) The use of vital attributes to predict successional changes in plant communities subject to recurrent disturbances. Vegetatio 43: 5–21.

    Article  Google Scholar 

  • Odum, E.P. (1969) The strategy of ecosystem development. Science 164: 262–270.

    Article  PubMed  CAS  Google Scholar 

  • Odum, H.T. and Pinkerton, R.C. (1955) Time’s speed regulator, the optimum efficiency for maximum output in physical and biological systems. Amer. Sci. 43: 331–343.

    Google Scholar 

  • Oosting, H.J. (1956) The Study of Plant Communities. 2nd Ed. Freemann, San Francisco, 440 pp.

    Google Scholar 

  • Pederson, R. L. (1981) Seed bank characteristics of the Delta Marsh, Manitoba: applications for wetland management. pp. 61–69. In B. Richardson (Ed.), Selected Proceedings of the Midwest Conference on Wetland Values and Management. Freshwater Society, Navarre, Minnesota.

    Google Scholar 

  • Rabotnov, T.A. (1974) Differences between fluctuations and successions. pp. 19–24, In R. Knapp (Ed.), Vegetation Dynamics. Junk, The Hague.

    Chapter  Google Scholar 

  • Reinink, K. and van der Toorn, J. (1976) Effect of changes in water table on the vegetation development of reed beds in the Zuid Flevoland area. Verhand. Kon. Ned. Akad. Wetensch., Afd. Natuurk., Tweede Reeks, 67: 120–167.

    Google Scholar 

  • Salisbury, E.J. (1970) The pioneer vegetation of exposed muds and its biological features. Philos. Trans. Roy. Soc. London B 259: 207–255.

    Article  Google Scholar 

  • Saxton, W.T. (1924) Phases of vegetation under monsoon conditions. J. Ecol. 12: 1–38.

    Article  Google Scholar 

  • Stewart, R.E. and Kantrud, H.A. (1971) Classification of natural ponds and lakes in the glaciated prairie region. U.S. Fish and Wildlife Service, Resource Publ. 92, 57 pp.

    Google Scholar 

  • van der Toorn, J., Brandsma, M., Bates, W.B. and Penny, M.G. (1969) De vegetatie van Zuidelijk Flevoland in 1968. De Levende Natuur 72: 56–62.

    Google Scholar 

  • van der Toorn, J. and Reinink, K. (1978) Experiments on the establishment of plant species in a reed field. Verhand. Kon. Ned. Akad. Wetensch., Afd. Natuurk., Tweede Reeks, 71: 292–296.

    Google Scholar 

  • van der Valk, A. G. (1981) Succession in wetlands: a Gleasonian approach. Ecology 62: 688–696.

    Article  Google Scholar 

  • van der Valk, A.G. (1982) Succession in temperate North American wetlands. pp. 169–179. In B. Gopal, R.E. Turner, R.G. Wetzel and D.F. Whigham (Eds.). Wetlands: Ecology and Management. International Scientific Publishers, Jaipur, India.

    Google Scholar 

  • van der Valk, A.G. and Davis, C.B. (1978a) The role of seed banks in the vegetation dynamics of prairie glacial marshes. Ecology 59: 322–335.

    Article  Google Scholar 

  • van der Valk, A.G. and Davis, C.B. (1978b) Primary production of prairie glacial marshes. pp. 21–37. In R.E. Good, D.F. Whigham and R.L. Simpson (Eds.), Freshwater Wetlands. Academic Press, New York.

    Google Scholar 

  • van der Valk, A.G. and Davis, C.B. (1979) A reconstruction of the recent vegetational history of a prairie glacial marsh, Eagle Lake, Iowa, from its seed bank. Aquat. Bot. 6: 29–51.

    Article  Google Scholar 

  • van der Valk, A.G. and Davis, C.B. (1980) The impact of a natural drawdown on the growth of four emergent species in a prairie glacial marsh. Aquat. Bot. 9: 301–322.

    Article  Google Scholar 

  • van der Valk, A.G., Davis, C.B., Baker, J.L. and Beer, C.E. (1979) Natural fresh water wetlands as nitrogen and phosphorus traps for land runoff. pp. 457–467. In P.E. Greeson, J.R. Clark and J.E. Clark (Eds.), Wetland Functions and Values: the State of our Understanding. American Water: Resources Association, Minneapolis.

    Google Scholar 

  • Weaver, J.E. and Clements, F.E. (1938) Plant Ecology. 2nd ed. McGraw-Hill, New York, 601 pp.

    Google Scholar 

  • Weller, M.W. (1975) Studies of cattail in relation to management for marsh wildlife. Iowa State J. Sci. 49: 383–412.

    Google Scholar 

  • Weller, M.W. (1981) Freshwater Marshes. Univ. Minnesota Press, Minneapolis, 146 pp.

    Google Scholar 

  • Weller, M.W. and Fredrickson, L.H. (1974) Avian ecology of a managed glacial marsh. Living Bird 12: 269–291.

    Google Scholar 

  • Weller, M.W. and Spatcher, C. S. (1965) Role of habitat in the distribution and abundance of marsh birds. Iowa Agriculture and Home Economics Experiment Station, Special Report 43, Ames, Iowa.

    Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Springer Science+Business Media Dordrecht

About this chapter

Cite this chapter

van der Valk, A.G. (1985). Vegetation Dynamics of Prairie Glacial Marshes. In: White, J. (eds) The Population Structure of Vegetation. Handbook of Vegetation Science, vol 3. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-5500-4_13

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-5500-4_13

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8927-2

  • Online ISBN: 978-94-009-5500-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics