Gamow’s Theory of Alpha-Decay

  • Roger H. Stuewer
Part of the Boston Studies in the Philosophy of Science book series (BSPS, volume 94)


George Gamow burst upon the European community of physicists like a meteor from outer space. The origin of his trajectory was distant Leningrad; his point of impact was Göttingen;. The time was mid-June 1928. The impression Gamow made has been recorded by Léon Rosenfeld. “I shall never forget,” Rosenfeld recalled, “the first time he appeared in Göttingen — how could anyone who has ever met Gamow forget his first meeting with him — a Slav giant, fair haired and speaking a very picturesque German; in fact he was picturesque in everything, even in his physics.”1 Gamow had learned German from a private tutor as a youth in Odessa with the result, he later recalled, that “I’m terribly poor inder,die,das, and my grammar is horrible, but pronunciation good.”2


Atomic Nucleus Decay Constant Private Tutor Satellite Model Nuclear Potential 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    L. Rosenfeld, “Nuclear Physics, Past and Future,” in:Nuclear Structure Study with Neutrons, eds. M. Nève de Mévergnies, P. Van Assche, and J. Vervier ( Amsterdam: North Holland, 1966 ), p. 483.Google Scholar
  2. 2.
    Interview with Charles Weiner, April 25, 1968, A.I.P. Center for History of Physics, New York, p. 12. Italics added.Google Scholar
  3. 3.
    H. Bethe, “Nuclear Physics B. Nuclear Dynamics, Theoretical,”Rev. Mod. Phys. 9 (1937): 161.CrossRefGoogle Scholar
  4. 4.
    E. Rutherford and T. Royds, “Spectrum of the Radium Emanation,” Nature 78 (1908): 220–221; Phil. Mag. 16 (1908): 313–317; reprinted in:The Collected Papers of Lord Rutherford of Nelson(hereafter cited as CPR), ed. James Chadwick, Vol. 2 (London: George Allen and Unwin, 1963), pp. 70–71, 84–88.CrossRefGoogle Scholar
  5. 5.
    E. Rutherford, “The Scattering of α and β Particles by Matter and the Structure of the Atom,”Phil. Mag. 21 (1911): 669–688; reprinted in CPR, Vol. 2, pp. 238–254. See also John L. Heilbron, “The Scattering of α and β Particles and Rutherford’s Atom ”Arch. Hist. Exact Sci. 4 (1968): 247–307.Google Scholar
  6. 6.
    O. v. Baeyer, O. Hahn and Lise Meitner, “Über die β-Strahlen des aktiven Niederschlags des Thoriums,”Phys. Zeit. 12(1911): 273–279; “Nachweis von β-Strahlen bei Radium D,” ibid.: 378–379; “Das Magnetische Spektrum der β-Strahlen des Thoriums,”ibid. 13 (1912): 264–266. These results were confirmed by J. Danysz, “Sur les rayons β de la famille du radium,” Comptes rendus 153 (1911): 339–341; Le Radium 9 (1912): 1–5.Google Scholar
  7. 7.
    E. Rutherford, “The Origin of β and γ Rays from Radioactive Substances,”Phil. Mag. 24 (1912): 453–462; reprinted in: CPR, Vol. 2, pp. 280–287 (quote on p. 286).Google Scholar
  8. 8.
    A. van den Broek, “Infra-atomic Charge,”Nature92 (1913): 373.Google Scholar
  9. 9.
    E. Rutherford and H. Robinson, “Heating Effect of Radium and its Emanation,”Phil. Mag. 25 (1913): 312–330; reprinted in: CPR, Vol. 2, pp. 312–327.Google Scholar
  10. 10.
    E. Rutherford, “The Structure of the Atom,” Phil. Mag. 27 (1914): 488–498; reprinted in: CPR, Vol. 2, pp. 423–431.Google Scholar
  11. 11.
    J. Chadwick, “Intensitätsverteilung im magnetischen Spektrum der β-Strahlen von Radium B+C,” Ber. d.Deutsch. Phys. Gesell. 12 (1914): 383–391.Google Scholar
  12. 12.
    R.H. Stuewer, “The Nuclear Electron Hypothesis,” in:Otto Hahn and the Rise of Nuclear Physics, ed. William R. Shea (Dordrecht / Boston / Lancaster: D. Reidel, 1983), pp. 19–67.Google Scholar
  13. 13.
    E. Rutherford, “Collision of a Particles with Light Atoms. IV. An Anomalous Effect in Nitrogen,”Phil. Mag. 37 (1919): 581–587; reprinted in: CPR, Vol. 2, pp. 585–590.Google Scholar
  14. 14.
    E. Rutherford, “Nuclear Constitution of Atoms,”Proc. Roy. Soc. [A] 97 (1920): 374–400; reprinted in: CPR, Vol. 3, pp. 14–38.CrossRefGoogle Scholar
  15. 15.
    See Stuewer, “The Nuclear Electron Hypothesis” (note 12).Google Scholar
  16. 16.
    “Anomalous Effect” (note 13), CPR, p. 589Google Scholar
  17. 17.
    E. Rutherford and J. Chadwick, “The Artificial Disintegration of Light Elements,”Phil. Mag. 42 (1921): 809–825; reprinted in:CPR, Vol. 3, pp. 48–62 (figure on p. 60).Google Scholar
  18. 18.
    P.M.S. Blackett, “The Ejection of Protons from Nitrogen Nuclei, Photographed by the Wilson Method,”Proc. Roy. Soc. [A] 107 (1925): 349–360.CrossRefGoogle Scholar
  19. 19.
    E. Rutherford and J. Chadwick, “The Disintegration of Elements by a Particles,”Phil. Mag. 44 (1922): 417–432; reprinted in:CPR, Vol. 3, pp. 67–80.Google Scholar
  20. 20.
    See his comments in:Nuclear Physics in Retrospect: Proceedings of a Symposium on the 1930s, ed. Roger H. Stuewer ( Minneapolis: University of Minnesota Press, 1979 ), p. 321.Google Scholar
  21. 21.
    Karl K. Darrow, “Some Contemporary Advances in Physics — XXII Transmutation,”Bell Sys. Tech. J. 10 (1931): 628–655; reprinted in Bell Tel. Sys. Tech. Pub. (Monograph B- 596), 28 pp. (quote on p. 14, where the controversy is also summarized).Google Scholar
  22. 22.
    One key document in the controversy is J. Chadwick, “Observations Concerning the Artificial Disintegration of Elements,”Phil. Mag. 2 (1926): 1056–1075.Google Scholar
  23. See Chadwick’s letters to E. Rutherford, December 9 and 12 [1927], in the Rutherford Correspondence, Cambridge University Library (hereafter RC).Google Scholar
  24. 24.
    See Chadwick’s interview with Charles Weiner, April 15–21, 1969, A.I.P. Center for History of Physics, New York, pp. 61–63.Google Scholar
  25. 25.
    See for example E. Rutherford, F.A.B. Ward, and C. E. Wynn-Williams, “A New Method of Analysis of Groups of Alpha Rays. (1) The Alpha-Rays from Radium C, Thorium C, and Actinium C,”Proc. Roy. Soc. [A] 129 (1930): 211–234; reprinted in:CPR, Vol. 3, pp. 225–246.CrossRefGoogle Scholar
  26. 26.
    E. Rutherford and J. Chadwick, “Scattering of a-particles by Atomic Nuclei and the Law of Force,”Phil. Mag. 50 (1925): 889–913; reprinted in:CPR, Vol. 3, pp. 143–163.Google Scholar
  27. 27.
    P. Debye and W. Hardmeier, “Anomale Zerstreuung von α-Strahlen,”Phys. Zeit. 21 (1926): 196–199.Google Scholar
  28. 28.
    E. Rutherford, “Atomic Nuclei and their Transformations,”Proc. Phys. Soc. 39 (1927): 359–372; reprinted in:CPR, Vol. 3, pp. 164–180; see especially pp. 178–179.CrossRefGoogle Scholar
  29. 29.
    E. Rutherford,Phil. Mag. 4 (1927): 580–605; reprinted in:CPR, Vol. 3, pp. 181–202.Google Scholar
  30. 30.
    H. Geiger and J.M. Nuttall, “The Ranges of the a Particles from Various Radioactive Substances and a Relation between Range and Period of Transformation,”Phil Mag. 22 (1911): 613–629Google Scholar
  31. H. Geiger and J.M. Nuttall, “The Ranges of the a Particles from Uranium,”Phil Mag. 23 (1912): 439–445.Google Scholar
  32. E. Rutherford, “Structure” (note 29),CPR, Vol. 3, p. 196.Google Scholar
  33. 33.
    For further biographical information see George Gamow,My World Line: An Informal Autobiography (New York: Viking Press, 1970) and Gamow’s interview with Charles Weiner (note 2).Google Scholar
  34. 34.
    G. Gamow and D. Ivanenko, “Zur Wellentheorie der Materie,”Zeit. f. Phys. 39 (1926): 865–868.CrossRefGoogle Scholar
  35. 35.
    Gamow recalled (My World Line, note 32, p. 52) that the resulting publication, W. Prokofiew and G. Gamow, “Anomale Dispersion an den Linien der Hauptserie des Kaliums (Verhältnis der Dispersionskonstanten des roten und violetten Dubletts),”Zeit. f. Phys. 44 (1927): 887–892, took him completely by surprise when it appeared — Rogdestvenski had given the research to Prokofiew for completion without Gamow’s knowledge.CrossRefGoogle Scholar
  36. SeeMy World Line (note 32), pp. 52–54.Google Scholar
  37. See note 29.Google Scholar
  38. My World Line, p. 60.Google Scholar
  39. See Ulam’s “Foreword” to My World Line, p. ix.Google Scholar
  40. 40.
    G. Gamow, “Zur Quantentheorie des Atomkernes,”Zeit. f. Phys. 51 (1928): 204–212.CrossRefGoogle Scholar
  41. 41.
    D. Enskog, “Das Bohrsche Magneton und die Radioaktivität,”Zeit. f. Phys. 45 (1927): 852–868.CrossRefGoogle Scholar
  42. 42.
    D. Enskog, “Magnetismus und Kernbau,”Zeit. f Phys. 52 (1928): 203–220CrossRefGoogle Scholar
  43. D. Enskog, “Über den Verlauf der α-Umwandlung,”Zeit. f Phys. 53 (1929): 639–645.CrossRefGoogle Scholar
  44. Gamow, “Quantentheorie” (note 39), p. 204.Google Scholar
  45. 45.
    Ibid., p. 205. See also J. R. Oppenheimer, “Three Notes on the Quantum Theory of Aperiodic Effects,”Phys. Rev. 31 (1928): 66–81CrossRefGoogle Scholar
  46. Lothar Nordheim, “Zur Theorie der Thermischen Emission und der Reflexion von Electronen an Metallen,”Zeit. f. Phys. 46 (1927): 833–855.CrossRefGoogle Scholar
  47. 47.
    Gamow, “Quantentheorie” (note 39), p. 208. The barrier width has been misprinted as e instead of l.Google Scholar
  48. My World Line (note 32), pp. 60–61.Google Scholar
  49. 49.
    “Quantentheorie” (note 39), p. 212.Google Scholar
  50. 50.
    “Nuclear Physics” (note 1), p. 483.Google Scholar
  51. 51.
    M. Born, “Zur Theorie des Kernzerfalls,” Zeit. f. Phys. 58 (1929): 306–321.CrossRefGoogle Scholar
  52. 52.
    G. Gamow and F. G. Houtermans, “Zur Quantenmechanik des radioaktiven Kerns,”Zeit. f. Phys. 52 (1928): 496–509.CrossRefGoogle Scholar
  53. 53.
    This expression for the decay constant, as Gregory Breit pointed out to Gamow and Houtermans by letter, contains a calculational error: the first two terms should be In (4πm/h) + 2 In v. The difference is unimportant, as it results only in slightly larger absolute values assumed for the radii r0. See R. Atkinson and F.G. Houtermans, “Zur Quantenmechanik der α-Strahlung,”Zeit. f Phys. 58 (1929): 493, footnote.CrossRefGoogle Scholar
  54. “Quantenmechanik” (note 50), p. 509.Google Scholar
  55. 55.
    My World Line(note 32), pp. 63–64. It appears that in the event Gamow’s stipend came from the Rask-Ørsted-Fond. See G. Gamow, “Bemerkung zur Quantentheorie des radioaktiven Zerfalls,”Zeit. f. Phys. 53 (1929): 604.CrossRefGoogle Scholar
  56. These letters are in the Bohr Scientific Correspondence (hereafter BSC) in the Archive for History of Quantum Physics (hereafter AHQP). There are copies of the AHQP in the A.I.P. Center for History of Physics, New York; the American Philosophical Society Library, Philadelphia; the Bohr Institute, Copenhagen; the University of California, Berkeley; the University of Minnesota, Minneapolis; the Accademia dei XL, Rome; the Science Museum, London; and the Deutsches Museum, Munich. By October 25, 1928, Bohr could write to Joffe extolling Gamow’s scientific gifts. Joffe actually did not receive this letter, so Bohr had to write him again on December 27 enclosing a copy of his earlier letter.Google Scholar
  57. 57.
    R.W. Gurney and E.U. Condon,Nature, 122 (1928): 439.CrossRefGoogle Scholar
  58. Gurney and Condon’s concluding sentences pleased both authors. See E.U. Condon, “Tunneling — How It All Started,”Amer. J. 46 (1978): 319–323, especially p. 320.Google Scholar
  59. 59.
    G. Gamow “The Quantum Theory of Nuclear Disintegration,”Nature122 (1928): 805–806.CrossRefGoogle Scholar
  60. 60.
    R. W. Gurney and E. U. Condon, “Quantum Mechanics and Radioactive Disintegration,” Phys. Rev. 33 (1929): 127–140.CrossRefGoogle Scholar
  61. 61.
    Ibid.: 127, footnote. The occasion coincided with the dedication of the new University of Minnessota physics building. See Condon, “Tunneling” (note 55), p. 320.Google Scholar
  62. 62.
    “Tunneling” (note 55), pp. 319 and 322.Google Scholar
  63. 63.
    J.R. Oppenheimer, “On the Quantum Theory of the Autoelectric Field Currents, ”Proc. Nat. Acad. Sci. 14 (1928): 363–365.CrossRefGoogle Scholar
  64. 64.
    R.H. Fowler and L. Nordheim, “Electron Emission in Intense Electric Fields,” Proc. Roy. Soc. [A] 119 (1928): 173–181.CrossRefGoogle Scholar
  65. 65.
    See N. F. Mott’s obituary notice of Gurney inNature 171 (1953): 910. Condon’s article (note 55, pp. 321–322) makes it clear that Gurney–s textbook writing after the war was to a great degree necessitated by his inability to secure a security clearance and hence a stable position, for unknown political reasons.Google Scholar
  66. 66.
    “Quantum Mechanics” (note 57), p. 130.Google Scholar
  67. 67.
    G. Wentzel, “Eine Verallgemeinerung der Quantenbedingungen für die Zwecke der Wellenmechanik,”Zeit. f. Phys. 38 (1926): 518–529.CrossRefGoogle Scholar
  68. 68.
    See note 40.Google Scholar
  69. 69.
    “Quantum Mechanics” (note 58).Google Scholar
  70. 70.
    Ibid., pp. 137–138. Also see Condon, “Tunneling” (note 55), p. 320.Google Scholar
  71. Gamow, “Quantum Theory” (note 57), p. 806.Google Scholar
  72. 72.
    G. Gamow, “Zur Quantentheorie der Atomzertriimmerung,”Zeit. f. Phys. 52 (1928): 510–515 (the quote is on p. 510).CrossRefGoogle Scholar
  73. 73.
    E. S. Bieler, “The Large-Angle Scattering of α-Particles by Light Nuclei,”Proc. Roy. Soc. [A] 105 (1924): 434–450.CrossRefGoogle Scholar
  74. 74.
    Gamow, “Zur Quantentheorie” (note 69), p. 513.Google Scholar
  75. 75.
    Ibid., p. 514.Google Scholar
  76. 76.
    W. Bothe and H. Franz, “Atomzertrümmerung durch α-Strahlen von Polonium,”Zeit. f. Phys. 43 (1927): 456–465;CrossRefGoogle Scholar
  77. W. Bothe and H. Franz, “Atomtrümmer, reflektierte α-Teilchen und durch a-Strahlen erregte Rdntgenstrahlen,”Zeit. f. Phys. 49 (1928): 1–26CrossRefGoogle Scholar
  78. 78.
    Gamow, “Zur Quantentheorie” (note 69), p. 515. G. now cited the single offending paper, G. Kirsch and H. Pettersson, “Die Zerlegung der Elemente durch Atomzertrümmerung,”Zeit. f. Phys. 42 (1927): 641–678.CrossRefGoogle Scholar
  79. 79.
    Gamow, “Zur Quantentheorie” (note 69), p. 515.Google Scholar
  80. 80.
    M. von Laue, “Notiz zur Quantentheorie des Atomkerns,”Zeit. f. Phys. 52 (1928): 726–734.CrossRefGoogle Scholar
  81. 81.
    See note 57.Google Scholar
  82. 82.
    “Notiz” (note 76), p. 730.Google Scholar
  83. 83.
    Ibid., p. 733. Von Laue cited Nernst’s book, Das Weltgebäude im Licht der Neueren Forschung (Berlin: Springer, 1921), for the latter’s hypothesis.Google Scholar
  84. 84.
    “Bemerkung” (note 53), 601–604. Gamow acknowledges von Laue–s gesture in his first sentence, and the discussions with Bohr in his last.Google Scholar
  85. 85.
    G.I. Pokrowski, “Über das Herausschleudern von α-Teilchen aus Atomkernen radioaktiver Stoffe durch kurzwellige Strahlung, ”Zeit. f. Phys. 59 (1930): 427–432;CrossRefGoogle Scholar
  86. G.I. Pokrowski, Part II,Zeit. f. Phys. 60 (1930): 845–849Google Scholar
  87. G.I. Pokrowski, “Über eine mögliche Wirkung kurzwelliger Strahlung auf Atomkerne,”Zeit. f. Phys. 63 (1930): 561–573CrossRefGoogle Scholar
  88. G.I. Pokrowski, “Zur Theorie der möglichen Wirkung von Strahlung auf Atomkerne,”Ann. d. Phys. 9 (1931): 505–512.CrossRefGoogle Scholar
  89. 89.
    H. Herszfinkiel and H. Dobrowolska, “Zu Herrn G.I. Pokrowskis Arbeiten, etc ”Zeit. f. Phys. 62 (1930): 432–434.CrossRefGoogle Scholar
  90. 90.
    J. Kudar, “Bemerkung zur quantenmechanischen Deutung der Radioaktivität, ”Zeit. f. Phys. 53 (1929): 61–66CrossRefGoogle Scholar
  91. J. Kudar, “Zur Quantenmechanik der Radioakivität,”Zeit. f. Phys. 53 (1929): 95–99, 134–137CrossRefGoogle Scholar
  92. J. Kudar,Zeit. f. Phys. 54 (1929): 297–299 (Nachtrag);CrossRefGoogle Scholar
  93. J. Kudar, “Die wellenmechanische Bedingung för die Stabilität der Atomkerne,”Zeit. f. Phys. 57 (1929): 710–712;CrossRefGoogle Scholar
  94. J. Kudar, “Über die Verweilzeit der Korpuskeln im Gebiet der ’negativen kinetischen Energie’,”Zeit. f. Phys. 58 (1929): 1–2CrossRefGoogle Scholar
  95. J. Kudar, A related criticism was entered by E. H. Kennard, „Über Potentialschwellen und radioaktiven Zerfall in der Quantenmechanik,”Phys. Zeit. 30 (1929): 495–497.Google Scholar
  96. 96.
    J. Kudar, “Wellenmechanische Begründung der Nernstschen Hypothese von der Wiederentstehung radioaktiven Element”Zeit. f. Phys.53 (1929): 166–167CrossRefGoogle Scholar
  97. J. Kudar, Part II,Zeit. f. Phys.60 (1930): 262–297.Google Scholar
  98. 98.
    J. Kudar, “Die wellenmechanische Charakter des β-Zerfalls,” Zeit. f. Phys. 57 (1929): 257–260CrossRefGoogle Scholar
  99. J. Kudar, Parts II and III, Zeit. f. Phys. 60 (1930): 168–175 and 176–180;Google Scholar
  100. J. Kudar, Part IV, Zeit. f. Phys: 686–689;Google Scholar
  101. J. Kudar, “Die β-Strahlung und das Energieprinzip,” Zeit. f. Phys64 (1930): 402–404;Google Scholar
  102. J. Kudar, “Über die Eigenschaften der Kernelektronen,” Zeit. f. Phys32 (1931): 34–37. For Schrodinger’s evaluations of Kudar, see Schrodinger to Bohr, January 1, 1929; September 25, 1930; and April 29, 1931, BSC. For Bohr’s, see Bohr to Schrodinger, May 8, 1931, BSC.Google Scholar
  103. 103.
    T. Sexl, “Zur Quantentheorie des Atomkerns,” Zeit. f. Phys54 (1929): 445–448CrossRefGoogle Scholar
  104. T. Sexl, “Zur wellenmechanischen Berechnung der radioaktiven Zerfallskonstanten,” Zeit. f. Phys56 (1929): 62–71;CrossRefGoogle Scholar
  105. T. Sexl, “Zur Theorie der bei der wellenmechanischen Behandlung des radioaktiven α- Zerfalls auftretenden Differentialgleichung,” Zeit. f. Phys: 72–93.Google Scholar
  106. 106.
    R. d’E. Atkinson and F. G. Houtermans, “Zur Quantenmechanik der α-Strahlung,” Zeit. f. Phys58 (1929): 478–486.CrossRefGoogle Scholar
  107. 107.
    T. Sexl, “Zur Quantenmechanik der α-Strahlung,” Zeit. f. Phys59 (1930): 579–582.CrossRefGoogle Scholar
  108. 108.
    R. d’E. Atkinson, “Über Resonanzund Dampfung in der Theorie des Atomkerns,” Zeit. f. Phys64 (1930): 507–519, especially p. 515.CrossRefGoogle Scholar
  109. F.G. Houtermans, “Neuere Arbeiten iiber Quantentheorie des Atomkerns,” Ergeb. d. exakt. Naturw. 9 (1930): 123–221, especially footnote 1, p. 152.CrossRefGoogle Scholar
  110. 110.
    T. Sexl, “Zur quantitativen Theorie der radioaktiven α-Emission, ” Zeit. f Phys.81 (1933): 163–177 (the quote is on p. 165).CrossRefGoogle Scholar
  111. T. Sexl, See also “Zur Theorie der Atomzertrümmerung,” Zeit. f Phys. 87 (1934): 105–126;CrossRefGoogle Scholar
  112. T. Sexl, “Bericht über Fragen der Kernphysik,” Phys. Zeit. 35 (1934): 119– 141.Google Scholar
  113. 113.
    Chr. Møller, “Der Vorgang des radioactiven Zerfalls unter Berücksichtigung der Relativitätstheorie,” Phys. Zeit. 55 (1929): 451–466.CrossRefGoogle Scholar
  114. 114.
    S. Gupta, Uber den radioaktiven Zerfall nach den relativistischen Wellengleichungen,” Zeit. f Phys. 69 (1931): 686–698.CrossRefGoogle Scholar
  115. 115.
    See note 48 (the quote is on p. 306).Google Scholar
  116. 116.
    H.B.G. Casimir, “Bemerkung zur Gamowschen Theorie des radioaktiven Zerfalls,” Physica1 (1934): 193–198 (the quote is on p. 193).CrossRefGoogle Scholar
  117. “Neuere Arbeiten” (note 89), p. 151.Google Scholar
  118. 118.
    See note 47.Google Scholar
  119. 119.
    See C. F. von Weizsäcker, Die Atomkerne: Grundlagen und Anwendungen ihrer Theorie(Leipzig: Akademische Verlagsgesellschaft, 1937), pp. 93–99, especially pp. 94–95.Google Scholar
  120. 120.
    See note 89.Google Scholar
  121. 121.
    “Nuclear Physics” (note 3), p. 162. Bethe himself then went on to give a derivation “which seems about the simplest of the correct ones.”Google Scholar
  122. 122.
    Interview (note 2), p. 26. We also know that Ettore Majorana, at least, wrote his 1929 doctoral thesis, “Sulla meccanica dei nuclei radioattivi,” on the new theory.Google Scholar
  123. See E. Amaldi, “Ettore Majorana, Man and Scientist,” in Strong and Weak Interactions — Present Problems ( New York: Academic Press, 1966 ), p. 17.Google Scholar
  124. 124.
    See note 40.Google Scholar
  125. 125.
    See Bohr to Fowler, December 14, 1928, BSC, where Bohr proposes Gamow’s visit and also tells Fowler that Hartree and Mott will be able to describe Gamow’s plans and work personally. Also see Gamow’s My World Line (note 32), pp. 66–69, where Gamow claims that Bohr wrote to Rutherford directly. However, Gamow probably was mistaken about that, as there is no letter extant in the Rutherford correspondence from Bohr during the period in question.Google Scholar
  126. 126.
    Rutherford to Bohr, December 19, 1928, BSC. Also see Hartree to Bohr, December 21,1928, BSC, in which Hartree says he talked to Fowler, and also to Rutherford a few days earlier about Gamow’s visit.Google Scholar
  127. 127.
    The exact dates of Gamow’s visit are known from a letter from Bohr to Hartree, January 5,1929, BSC, and from Bohr to Fowler, February 14, 1929, BSC.Google Scholar
  128. 129.
    My World Line (note 32), p. 68.Google Scholar
  129. 129.
    Mott to Bohr, undated, no doubt February 1929, BSC.Google Scholar
  130. Proc. Roy. Soc. [A] 123 (1929): 373–390. Rutherford’s remarks occupy pp. 373–382.Google Scholar
  131. 131.
    K. K. Darrow, ’Contemporary Advances in Physics — XXVIII. The Nucleus, Third Part,” Bell Sys. Tech. J. 13 (1934): 580–613; reprinted in Bell Tel. Sys. Tech. Pub. (Monograph B- 810), 48 pp. (the quote is on p. 29). Rutherford’s reaction was explicitly reported in Chadwick’s interview (note 24), p. 51.Google Scholar
  132. 132.
    E. Rutherford, J. Chadwick, and C.D. Ellis, Radiations from Radioactive Substances(New York: Macmillan and Cambridge: Cambridge University Press, 1930 ), pp. 326–333.Google Scholar
  133. 133.
    Ibid., p. 327. We know of Chadwick’s authorship of these remarks from his interview (note 24), p. 49.Google Scholar
  134. 134.
    Rutherford’s model was also insightfully criticized earlier by G. Gentile, “Sulla teoria dei satelliti de Rutherford,” Atti della Reale Accad. Naz. dei Lincei1 (1928): 346–349. E. Segre recalls (private communication, October 1979) that Gentile often visited Rome, where he conveyed his opposition to Fermi’s group.Google Scholar
  135. 135.
    See Mott to Bohr, September 16, 1930, BSC.Google Scholar
  136. 136.
    See Fowler to Bohr, April 9, 1929, BSC. Also see Fowler and A.H. Wilson, “A Detailed Study of the ’Radioactive Decay’ of, and the Penetration of α-Particles into, a Simplified One-Dimensional Nucleus,” Proc. Roy. Soc. [A] 124 (1929): 493–501CrossRefGoogle Scholar
  137. R. W. Gurney, “Nuclear Levels and Artificial Disintegration,” Nature123 (1929): 565. Condon later pointed out that, to his chagrin, he talked Gurney out of this idea in Princeton and hence delayed its publication, but Gurney persevered and published it from Tokyo when he was “no longer subject to my bad influence.” See “Tunneling” (note 55), p. 321.CrossRefGoogle Scholar
  138. “Detailed Study” (note 113), p. 501.Google Scholar
  139. 139.
    J. Chadwick, and G. Gamow, “Artificial Disintegration by α-Particles,” Nature 126 (1930): 54–55.CrossRefGoogle Scholar
  140. 140.
    R. d’E. Atkinson, “Über Resonanz und Dämpfung in der Theorie des Atomkerns,” Zeit. f. Phys. 64 (1930): 507–519.CrossRefGoogle Scholar
  141. 141.
    G. Hoffmann and H. Pose, “Nachweis von Atomtrümmern durch Messung eines einzelnen H-Strahls,” Zeit. f. Phys. 56 (1929): 405–415;CrossRefGoogle Scholar
  142. H. Pose, “Messungen von Atomtriimmern aus Aluminium, Beryllium, Eisen, und Kohlenstoff nach der Riickwartsmethode,” Zeit. f. Phys. 60 (1930): 156–167.CrossRefGoogle Scholar
  143. 143.
    H. Pose, “Über die diskreten Reichweitengruppen der H-Teilchen aus Aluminum. I. Abhängigkeit der Ausbeute und Energie der H-Teilchen von der Primärenergie,” Zeit. f. Phys. 64 (1930): 1–21.CrossRefGoogle Scholar
  144. 144.
    H. Pose, “Über Richtungsverteilung der von Polonium-α-Strahlen aus Aluminum ausgelösten H-Teilchen,” Phys. Zeit. 31 (1930): 943–945;Google Scholar
  145. J. Chadwick, J.E.R. Constable, and E. C. Pollard, “Artificial Disintegration by α-Particles,” Proc. Roy. Soc. [A] 130 (1931): 463–489;CrossRefGoogle Scholar
  146. K. Diebner and H. Pose, “Über die Resonanzeindringung von α- Teilchen in den Aluminumkern,” Zeit. f. Phys. 75 (1932): 753–762CrossRefGoogle Scholar
  147. A summary is provided in M. A. Tuve, “The Atomic Nucleus and High Voltages,” J. Franklin Inst. 216 (1933): 1–38, especially p. 20.CrossRefGoogle Scholar
  148. 148.
    W. Bothe and H. Becker, “Kiinstliche Erregung von Kern-γ-Strahlen,” Zeit. f. Phys. 66 (1930): 289–310.CrossRefGoogle Scholar
  149. 149.
    W. Bothe, “α-Strahlen, künstliche Kernumwandlung und -Anregung, Isotope,” in: Convegno di Fisica Nucleare Ottobre 1931-IX(Rome: Reale Academia d’ltalia, 1932-X), pp. 83–106.Google Scholar
  150. 150.
    See E.T.S. Walton to E.M. McMillan, April 1 1, 1977, in: Nuclear Physics in Retrospect (note 20), pp. 141–142.Google Scholar
  151. 151.
    Gamow, My World Line (note 32), p. 83.Google Scholar
  152. 152.
    J. Cockcroft and E.T.S. Walton, “Experiments with High Velocity Positive Ions. II. — The Disintegration of Elements by High Velocity Protons,” Proc. Roy. Soc. [A] 137 (1932): 229–242.CrossRefGoogle Scholar
  153. 153.
    See Gamow to Bohr, January 6, 1929, BSC, where Gamow reports that en route to Cambridge he stopped off in Leiden, where P. Ehrenfest was greatly interested in his “Tropfchenmodell.” Gamow was partly influenced by recent studies of Guido Beck. See for example his paper „Über die Systematik der Isotopen. II.,” Zeit. f. Phys. 50 (1928): 548–554.CrossRefGoogle Scholar
  154. 154.
    See note 107. Gamow’s remarks are on pp. 386–387. See also “Über die Struktur des Atomkernes,” Phys. Zeit. 30 (1929): 717–720.Google Scholar
  155. 155.
    G. Gamow, “Mass Defect Curve and Nuclear Constitution,” Proc. Roy Soc. [A] 126 (1930): 632–644.CrossRefGoogle Scholar
  156. Gamow–s “Tropfchenmodell” was widely discussed at the time; in particular it was picked up by C. F. von Weizsäcker, “Zur Theorie der Kernmassen,” Zeit. f. Phys. 96 (1935): 431–458.CrossRefGoogle Scholar
  157. 157.
    R. d’E. Atkinson and F.G. Houtermans, “Zur Frage der Aufbaumoglichkeit der Elemente in Sternen,” Zeit. f. Phys. 54 (1929): 656–665;CrossRefGoogle Scholar
  158. M. Delbruck and G. Gamow, “Übergangswahrscheinlichkeiten von angeregten Kernen,” Zeit. f. Phys. 72 (1931): 492–499.CrossRefGoogle Scholar
  159. 159.
    G. Gamow, “Fine Structure of α-Rays,” Nature126 (1930): 397. The famous photograph commemorating the signing is reproduced in My World Line (note 32), p. 87, with, however, an incorrect caption — the other person on the photo is not Landau but Rosenfeld; Peierls took the picture.CrossRefGoogle Scholar
  160. G. Gamow, Also, for an earlier related article see “Successive α- Transformations,” Nature123 (1929): 606, and for a later one seeGoogle Scholar
  161. G. Gamow, “Über die Theorie des radioaktiven a-Zerfalls, der Kernzertrlimmerung und die Anregung durch a-Strahlen,” Phys. Zeit. 32 (1931): 651–655Google Scholar
  162. 162.
    G. Gamow, Constitution of Atomic Nuclei and Radioactivity (Oxford: Clarendon Press, 1931). The book is dedicated “To the Cavendish Laboratory, Cambridge” and the Preface was signed in Copenhagen on May 1, 1931. Gamow had been much concerned with the behavior of the nuclear electrons for years, but especially following O. Klein’s discovery of the so-called Klein paradox in Copenhagen at the end of 1928.Google Scholar
  163. See O. Klein, “Die Reflexion von Elektronen an einerrl Potentialsprung nach der relativistischen Dynamik von Dirac,” Zeit. f. Phys. 53 (1929): 157–165..CrossRefGoogle Scholar
  164. 164.
    See his interview (note 2), p. 34.Google Scholar
  165. 165.
    See My World Line (note 32), Chapters 3–6, pp. 55–133.Google Scholar
  166. 166.
    G. Gamow, “Quantum Theory of Nuclear Structure,” in: Convegno ( note 122), pp. 65-81.Google Scholar
  167. 167.
    See for example his letters to Bohr, January 20,1935, BSC, and to Rutherford, February 5, 1935, RC.Google Scholar

Copyright information

© D. Reidel Publishing Company 1986

Authors and Affiliations

  • Roger H. Stuewer

There are no affiliations available

Personalised recommendations