Skip to main content

Development of an Economical Soil Model for Climate Simulation

  • Conference paper
Current Issues in Climate Research
  • 91 Accesses

Summary

The prediction of surface temperature and moisture over continents is an important problem in climate simulation. The paper describes the development of an economic two-layer soil model. Special emphasis has been given to a proper simulation of the diurnal and the annual period. Moreover, the model permits a gross representation of the effects of different soil types and vegetation coverings.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. KURBATKIN, G.P., MANABE, S. and HAHN, D.G. (1979). The moisture content of the continents and the rate of summer monsoon circulation. Soviet Meteor. and Hydr., Nr-11, 1979; 1 – 6

    Google Scholar 

  2. RIND, D. (1982). The influence of ground moisture conditions in North America on summer climate as modeled in the GISS GCM. Mon.Wea.Rev. 110; 1487 – 1494

    Article  Google Scholar 

  3. ROWNTREE, P.R. and BOLTON, J.A. (1983). Effects of soil moisture anomalies over Europe in summer. In: Variations in the global water budget, A. Street-Perrott et al., Eds., D. Reidel Publ. Comp.; 447 – 462

    Google Scholar 

  4. YEH, T.-C., WETHERALD, R.T. and MANABE, S. (1984). The effect of soil moisture on the short-term climate and hydrology change — A numerical experiment. Mon.Wea.Rev. 112; 474 – 490

    Article  Google Scholar 

  5. YEH, T.-C., WETHERALD, R.T. and MANABE, S. (1983). A model study of the short-term climate and hydrologic effects of sudden snow-cover removal. Mon.Wea.Rev. 111; 1013 – 1024

    Article  Google Scholar 

  6. CARSON, D.J. (1982). Current parameterization of land-surface processes in atmospheric general circulation models. Paper presented at the JSC Study Conference on Land Surface Processes in Atmospheric General Circulation Models, Greenbelt, 5–10 January 1981. Cambridge University Press; 61 – 108

    Google Scholar 

  7. DEARDORFF, J.W. (1978). Efficient prediction of ground surface temperature and moisture, with inclusion of a layer of vegetation. J.Geoph.Res. Vol. 83, No. C4; 1889 – 1903

    Article  Google Scholar 

  8. SMAGORINSKY, J., MANABE, S. and HOLLOWAY, J.L. (1965). Numerical results from a nine-level general circulation model of the Atmosphere. Mon.Wea.Rev. 93; 727 – 768

    Article  Google Scholar 

  9. MANABE, S. (1969). Climate and the ozean circulation. I. The atmospheric circulation and the hydrology of the earth’s surface. Mon.Wea.Rev. 97; 739 – 774

    Article  Google Scholar 

  10. MATTHEWS, E. (1983). Global vegetation and land use: New high-resolution data bases for climate studies. J.Clim. and Appl.Met. 22; 474 – 487

    Article  Google Scholar 

  11. RANDALL, D.A. (1983). Monthly and seasonal simulations with the GLAS climate model. Workshop on intercomparison of large-scale models used for extended range forecasts, 30.6.–2.7.1982, ECMWF; 107 – 166

    Google Scholar 

  12. LAVAL, K., OTTLE, C., PERRIER, A. and SERAFINI, Y. (1984). Effect of parameterization of evapotranspiration on climate simulated by a GCM. In: Bergen, A.L. and C. Nicolis, Eds.: New perspectives in climate modelling. Elsevier; 223 – 247

    Google Scholar 

  13. DICKINSON, R.E. (1984). Modeling evapotranspiration for three-dimensional global climate models. Climate processes and Climate sensitivity. Geophysical Monograph 29, Maurice Ewing Volume 5; 58 – 72

    Google Scholar 

  14. JACOBSEN, I. and HEISE, E. (1982). A new economic method for the computation of surface temperature in numerical models. Beitr.Phy.s.Atm. 55; 128 – 141

    Google Scholar 

  15. BECKER, A. (1974). Applied principles of catchment simulation. IAHS-AISH Publ. 101, Vol. 2; 762 – 774.

    Google Scholar 

  16. HOLTAN, H.N. (1970). Representative and experimental basins as dispersed systems. Symposium IASH/UNESCO Publ. 96

    Google Scholar 

  17. FAO/UNESCO (1971–78). Soil map of the world. Paris

    Google Scholar 

  18. SCHMITHÃœSEN, J. (1976). Atlas zur Biogeographie. Mannheim

    Google Scholar 

  19. DOOGE, J.C.I. (1982). Parameterizations of hydrologic processes. Paper presented at the JSC Study Conference on Land Surface Processes in Atmospheric General Circulation Models, Greenbelt, 5–10 January 1981. Cambridge University Press

    Google Scholar 

  20. ICSU/WMO (1984). Report of the meeting of experts on the design of a pilot atmospheric-hydrological experiment for the WCRP, Geneva, 28 November-2 December 1983. WCP-76

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 ECSC, EEC, EAEC, Brussels and Luxembourg

About this paper

Cite this paper

Bauer, H., Heise, E., Pfaendtner, J., Renner, V. (1986). Development of an Economical Soil Model for Climate Simulation. In: Ghazi, A., Fantechi, R. (eds) Current Issues in Climate Research. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-5494-6_20

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-5494-6_20

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8925-8

  • Online ISBN: 978-94-009-5494-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics