Skip to main content

Ab Initio SCF and CI Studies on the Ground State of the Water Molecule. III. Vibrational Analysis of Potential Energy and Property Surfaces

  • Conference paper

Abstract

Ab initio SCF and CI potential energy and property surfaces for the ground electronic state of the water molecule have been used in vibrational analyses of water molecules including the D and T isotopic variants. The formalism is based on a perturbation theory approach and the use of a proper non-linear transformation of internal coordinates of each surface point to normal coordinates. Vibrational excitation energies, zero-point corrections to one-electron properties, and transition intensities are reported and compared with experimental data and other ab initio results. The general usefulness of the method and its dependence on such variables as the quality of the electronic wavefunctions, subsequent analytical representations of the potential energy, and the particular application of the perturbation theory are discussed.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. B.J. Rosenberg and I. Shavitt, J. Chem. Phys. 63, 2162 (1975).

    Article  CAS  Google Scholar 

  2. B.J. Rosenberg, W.C. Ermler and I. Shavitt, J. Chem. Phys. 65, 4072 (1976).

    Article  CAS  Google Scholar 

  3. C.W. Kern and R.L. Matcha, J. Chem. Phys. 49, 2081 (1968);

    Article  CAS  Google Scholar 

  4. W.C. Erraler and C.W. Kern, J. Chem. Phys. 55, 4851 (1971);

    Article  Google Scholar 

  5. B.J. Krohn, W.C. Ermler and C.W. Kern, J. Chem. Phys. 60, 22 (1974).

    Article  CAS  Google Scholar 

  6. W.C. Ermler and B.J. Krohn, J. Chem. Phys. 67, 1360 (1977).

    Article  CAS  Google Scholar 

  7. B.J. Krohn and C.W. Kern, J. Chem. Phys. 69, 5310 (1978);

    Article  CAS  Google Scholar 

  8. B.J. Krohn and C.W. Kern, Battelle Memorial Institute — Ohio State University Theoretical Chemistry Group Technical Report No. 98 (1978).

    Google Scholar 

  9. A.R. Hoy, I.M. Mills and G. Strey, Mol. Phys. 24, 1265 (1972);

    Article  CAS  Google Scholar 

  10. A.R. Hoy and P.R. Bunker, J. Mol. Spectrosc. 74, 1 (1979).

    Article  CAS  Google Scholar 

  11. I.M. Mills, in Molecular Spectroscopy: Modern Research, edited by K.N. Rao and C.W. Mathews (Academic Press, New York, 1972), p. 115.

    Google Scholar 

  12. R.J. Bartlett, I. Shavitt and G.D. Purvis, J. Chem. Phys. 71, 281 (1979).

    Article  CAS  Google Scholar 

  13. P. Hennig, W.P. Kraemer, G.H.F. Diercksen and G. Strey, Theoret. Chim. Acta 47, 233 (1978).

    Article  CAS  Google Scholar 

  14. W.P. Kraemer, B.O. Roos and P.E.M. Siegbahn, Chem. Phys. 69, 305 (1982).

    Article  CAS  Google Scholar 

  15. G.D. Carney, L.L. Sprandel and C.W. Kern, Adv. Chem. Phys. 37, 305 (1978);

    Article  CAS  Google Scholar 

  16. G.D. Carney and C.W. Kern, Int. J. Quantum Chem. Symp. 9, 317 (1975).

    Article  CAS  Google Scholar 

  17. M.G. Bucknell and N.C. Handy, Mol. Phys. 28, 777 (1974).

    Article  CAS  Google Scholar 

  18. R.J. Whitehead and N.C. Handy, J. Mol. Spectrosc. 59, 459 (1976).

    Article  CAS  Google Scholar 

  19. P. Botschwina, Chem. Phys. 40, 33 (1979).

    Article  CAS  Google Scholar 

  20. L.B. Harding and W.C. Ermler, J. Comput. Chem. 6, 13 (1985).

    Article  CAS  Google Scholar 

  21. S.A. Clough, Y. Beers, G.P. Klein and L.S. Rothman, J. Chem. Phys. 59, 2254 (1973).

    Article  CAS  Google Scholar 

  22. H. Kuze, T. Amano and T. Shimizu, J. Chem. Phys. 75, 4869 (1981).

    Article  CAS  Google Scholar 

  23. J.A. Smith, P. Jorgensen and Y. Öhrn, J. Chem. Phys. 62, 1285 (1975).

    Article  CAS  Google Scholar 

  24. W.T. Luh and G.C. Lie, J. Quant. Spectrosc. Radiat. Transfer 21, 547 (1979).

    Article  CAS  Google Scholar 

  25. E.R. Davidson and D. Feller, Chem. Phys. Lett. 104, 54 (1984).

    Article  CAS  Google Scholar 

  26. G.J. Sexton and N.C. Handy, Mol. Phys. 51, 1321 (1984).

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 D. Reidel Publishing Company

About this paper

Cite this paper

Ermler, W.C., Rosenberg, B.J., Shavitt, I. (1985). Ab Initio SCF and CI Studies on the Ground State of the Water Molecule. III. Vibrational Analysis of Potential Energy and Property Surfaces. In: Bartlett, R.J. (eds) Comparison of Ab Initio Quantum Chemistry with Experiment for Small Molecules. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-5474-8_7

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-5474-8_7

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8917-3

  • Online ISBN: 978-94-009-5474-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics