Skip to main content

Time Resolved Properties of Small Astrophysical Molecules

  • Chapter
Molecular Astrophysics

Part of the book series: NATO ASI Series ((ASIC,volume 157))

  • 197 Accesses

Abstract

Periodic excitations of molecular levels makes possible not only the determination of resulting emission lines but also their individual lifetimes. Today most measurements of this kind are performed either using high power electron excitation, such as applied in the High Frequency Deflection (HFD) technique developed at our laboratory, or pulsed laser excitation. Completed by for instance supersonic jet targets, time resolved spectroscopy should now be considered as an important branch of molecular physics with a number of astrophysical applications.

While most astrophysical observations of molecules have recently been carried out at radio wavelengths, the most accurate abundance estimates are generally performed from optical absorption spectra provided that the associated f-values are known. Thanks to the development of time resolved spectroscopy, f-values are now available for transitions in most of the important diatomic molecules, which combined with equivalent widths may yield abundances with uncertainties as small as 15 %.

Other important applications of molecular lifetime investigations are found in studies of various kinds of radiationless transitions, for which purpose it is much more sensitive than classical spectroscopic tools. Thus the inverse of our recently discovered new kind of predissociations through direct interaction between bound-continuum levels of two attractive states in the carbon group of hydrides could be important at molecular formation at low temperatures. Other applications are found in determinations of, for instance thermal collision cross sections and various kinds of rate coefficients.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Erman, P. 1979, Physica Scripta 20, pp. 575–581.

    Article  ADS  Google Scholar 

  2. Erman, P. 1979, Specialists Periodical Reports, Molecular Spectroscopy Vol 6, pp. 174–231.

    Article  Google Scholar 

  3. Levy, D.H., Scientific Am., Feb. 84.

    Google Scholar 

  4. Erman, P., Gustafsson, O. and Larsson, M. 1983, Physica Scripta 27, pp. 192–200.

    Article  ADS  Google Scholar 

  5. Curtis, L.J. and Erman, P. 1977, J. Opt. Soc 67, pp. 1218–1230.

    Article  ADS  Google Scholar 

  6. Wineland, D.J., Itano, W.M. and van Dyck, R.S. 1983, Adv. in at. and mol. physics 19, pp. 135–186.

    Article  Google Scholar 

  7. Bruna, P.J. and Peyerimhoff, S. 1983, Bull. Soc. Chim. Belg. 92, pp. 525–546.

    Article  Google Scholar 

  8. Siegbahn, P.E.M., Almlof, J., Heiberg, A. and Roos, B.O. 1981, J. Chem. Phys. 74pp. 2384–2396.

    Article  ADS  Google Scholar 

  9. Brzozowski, J., Bunker, P., Elander, N. and Erman, P. 1976, Astrophys. J. 207, pp. 414–424.

    Article  ADS  Google Scholar 

  10. Becker, K.H., Brenig, H.H. and Tatarczyk, T. 1980, Chem. Phys. Lett. 71, pp. 242–245.

    Article  ADS  Google Scholar 

  11. Larsson, M. and Siegbahn, P.E.M. 1983, Physica Scripta 79, 2270–2277.

    Google Scholar 

  12. Erman, P. 1977, Astrophys. J. 213, pp. L89-L81.

    Article  ADS  Google Scholar 

  13. Mahan, B.H. and O’Keefe, A. 1981, Astrophys. J. 248, pp. 1209–1216.

    Article  ADS  Google Scholar 

  14. Larsson, M. and Siegbahn, P.E.M. 1983, Chem. Phys. 76, pp. 175–184.

    Article  Google Scholar 

  15. Kuzmenko, N.E., Kuznetsova, L.A., Monyakin, A.P., Kuzyaka, Yu Ya. and Plastinin, Yu. A. 1979, Sov. Phys. Usp. 22, pp. 160-

    Article  ADS  Google Scholar 

  16. Dumont, M.N. and Remy, F. 1982, Spectroscopy Letters 15, pp. 699–772.

    Article  ADS  Google Scholar 

  17. Larsson, M. 1983, Astron. Astrophys. 128, pp. 291–298.

    ADS  Google Scholar 

  18. Erman, P., Lambert, D.L., Larsson, M. and Mannfors, B. 1982 Astrophys. J. 253, pp. 983–988.

    Article  ADS  Google Scholar 

  19. Brault, J.W., Delbouille, L., Grevesse, N., Roland, G., Sauval, A.J. and Testerman, L. 1982, Astron, Astrophys. 198pp. 201–206.

    ADS  Google Scholar 

  20. Cooper, D. and Nicholls, R.W. 1975, J. Quant. Spectr. Rad. Transf. 15, pp. 139–150.

    Article  ADS  Google Scholar 

  21. van Dishoek, E. 1983, Chem. Phys. 77, 277–286.

    Article  ADS  Google Scholar 

  22. Hubrich, C., Wildt, J., Bauer, W. and Becker, K.H. (to be published).

    Google Scholar 

  23. Brzozwski, J., Bunker, P., Elander, N. and Erman P. 1976, Astrophys. J. 207, pp. 414–424.

    Article  ADS  Google Scholar 

  24. Carlson, T.A., Duric, N., Erman, P. and Larsson, M. 1978, J. Phys. B11, pp. 3667–3675.

    ADS  Google Scholar 

  25. Erman, P., Gustafsson, O, and Larsson, M. 1983, Physica Scripta 27, pp. 256–260.

    Article  ADS  Google Scholar 

  26. Bergeman, T., Erman, P., Haratym, Z. and Larsson, M. 1981, Physica Scripta 23, pp. 45–53

    Article  ADS  Google Scholar 

  27. Erman, P. 1980, Physica Scripta 22, pp. 108–113.

    Article  ADS  Google Scholar 

  28. Carlsson, T.A., Duric, N., Erman, P. and Larsson, M. 1978, Z. Phys. A 287, pp. 123–136.

    Article  ADS  Google Scholar 

  29. Erman, P. and Larsson, M. 1980, Physica Scripta 22, pp. 348–352.

    Article  ADS  Google Scholar 

  30. Duric, N., Erman, P. and Larsson, M. 1978, Physica Scripta 18, pp. 39–46.

    Article  ADS  Google Scholar 

  31. Katayama, D.R., Miller, T.A. and Bondybey, V.E. 1979, J. Chem. Phys. 71, pp. 1662–1669.

    Article  ADS  Google Scholar 

  32. Sneden, C. and Lambert, D.L. 1982, Astrphys. J. 259, pp. 381–391.

    Article  ADS  Google Scholar 

  33. Cartwright, D.C. and Hay, P.J. 1982, Astrophys. J. 257, pp. 383–387.

    Article  ADS  Google Scholar 

  34. Larsson, M., Siegbahn, P.E.M. and Agren, H. 1983, Astrophys. J. 272, pp 369–376.

    Article  ADS  Google Scholar 

  35. Pendleton Jr., W., Erman, P., Larsson, M. and Witt, G. 1983, Physica Scripta 28, pp. 532–538.

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 D. Reidel Publishing Company

About this chapter

Cite this chapter

Erman, P. (1985). Time Resolved Properties of Small Astrophysical Molecules. In: Diercksen, G.H.F., Huebner, W.F., Langhoff, P.W. (eds) Molecular Astrophysics. NATO ASI Series, vol 157. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-5432-8_16

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-5432-8_16

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8898-5

  • Online ISBN: 978-94-009-5432-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics