Skip to main content

Shock Vaporization and the Accretion of the Icy Satellites of Jupiter and Saturn

  • Chapter
Ices in the Solar System

Part of the book series: NATO ASI Series ((ASIC,volume 156))

Abstract

Shock wave data, thermodynamic and phase diagram data for ice, porous ice, and water are taken together with a Rice-Walsh-Bakanova equation of state to define the shock pressures and impact velocities required to induce incipient melting (IM) (6 GPa), complete melting (CM) (10 GPa), and passage through the vapor-liquid critical point (CP) upon isentropic release (22.5 GPa). Upon expanding along the isentrope which passes through CP ~0.61 kPa (6.1 mbar) is achieved. Below this pressure, ice sublimates and ~0.4 mass fraction H2O gas is in equilibrium with ice I. The minimum impact velocity required to induce IM, CM, and isentropic release through CP is 2.1, 3.0, and 4.5 km/sec for silicate impactors. For icy projectiles, Hugoniot states achieved in icy targets or projectiles depend only weakly on initial temperature of ice. The IM, CM, and CP isentropes are achieved upon impacting with an icy projectile an icy surface at velocities of 3.4, 4.4, and 7.2 km/sec, respectively. We observe that at a partial H20 pressure below 0.61 kPa and temperatures below 273K, ice partially vaporizes and requires ~3000 kJ/kg of heat of vaporization for complete sublimation. We examine the hypothesis that the smaller satellites of Saturn having mean densities in the 1.1 to 1.4 Mg/m3 range represent primordial accreted planetesimal condensates (60% (wt.) H2O, and 40% (wt.) silicate) formed in the proto-Jovian and Saturnian accretionary planetary discs. These densities are in the range expected for water-ice/silicate mixtures constrained to the solar values of O/Si and O/Mg atomic ratios. If the large satellites accreted from the same group of planetesimals which formed the small Saturnian satellites, impact vaporization of water upon accretion into a porous regolith at low H2O partial pressure can account for the increase in mean planetesimal density from 1.6 Mg/m3 (43% H20 + 57% silicate) to a mean planetary ,density of 1.9 Mg/m3 for Ganymedean-sized water-silicate objects. If impact-volatilization of initially porous planetesimals is assumed, we demonstrate that starting with planetesimals composed of 54% H2O and 40% silicate (1.35 Mg/m3) partial devolatilization upon accretion will yield a Ganymede-sized planet, having a radius of 2600 km and a density of 1.85 kg/m3, similar to that of Ganymede, Callisto, and Titan.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Ahrens, T.J., Lyzenga, G.A., Mitchell, A.C. 1982, in High Pressure Research in Geophysics, ed. by S. Akimoto and M.H. Manghnani, Center for Academic Publications, Japan, pp. 579–594.

    Google Scholar 

  2. Ahrens, T.J. and O’Keefe, J.D. 1972, The Moon 4, pp. 214–249.

    Article  ADS  Google Scholar 

  3. Anderson, D.L. Benson, C.S. 1963, in Ice and Snow, ed. by W.D. Kingery, MIT Press, pp. 391–411.

    Google Scholar 

  4. Anderson, G.D. 1968, U.S. Army CRREL Res. Rept. 257.

    Google Scholar 

  5. Bakanova, A.A., Zubarev, V.N., Sutulov, Yu.N., and Trunin, R.F. 1976, Sov. Phys. JETP. 41, pp. 544.

    ADS  Google Scholar 

  6. Boslough, M.B., Ahrens, T.J., Mitchell, A.C. 1984, J. Geophys. Res., 89, B9, pp. 7845–7851.

    Article  ADS  Google Scholar 

  7. Bosnjakovic, F., Renz, U., Burow, P. 1970, Mollier Enthalpy, Entropy Diagram of Water, GZH, Zagreb, Hemisphere Publishing Corp., Washington, D.C.

    Google Scholar 

  8. Burnham, C.W., Holloway, J.R., Davis, N.F. 1969, The Geological Society of America special paper #132, 99 pp.

    Google Scholar 

  9. Cole, G.H.A. 1984, Quart. J. Roy. astr. Soc. 25, pp. 19–27.

    ADS  Google Scholar 

  10. Cowperthwaite, M. Shaw, R. 1970, J. Chem. Phys. 53, pp. 555–560.

    Article  ADS  Google Scholar 

  11. Dorsey, N.E. 1940, Properties of Ordinary Water-Substance, Reinhold Publ. Corp., N.Y., 673 pp.

    Google Scholar 

  12. Fletcher, N.H. 1970, The Chemical Physics of Ice, Cambridge Univ. Press, 271 pp.

    Book  Google Scholar 

  13. Gaffney, E.S. 1985, Proc. NATO Workshop on Ices in the Solar System, Nice, France, Jan 16–19, 1984.

    Google Scholar 

  14. Gaffney, E.S., Ahrens, T.J. 1980, Geophys. Res. Lett. 7, pp. 407–409.

    Article  ADS  Google Scholar 

  15. Kormer, S B. 1968, Sov. Phys. Usp. 11, pp. 229–254.

    Article  ADS  Google Scholar 

  16. Larson, D.B., Bearson, G.D., Taylor, J.R. 1973, No. Amer. Contrib. 2nd Int. Conf Permafrost, Yakutsk, pp. 318–325.

    Google Scholar 

  17. Linde, R K., Schmidt, D.N., 1966, J. Appl. Phys., 37, pp. 3259–3271.

    Article  ADS  Google Scholar 

  18. Lunine, J.A., Stevenson, D.J. 1982, Icarus 52, pp. 14–39.

    Article  ADS  Google Scholar 

  19. Lyzenga, G.A, Ahrens, T.J., Mitchell, A.C., 1983, J. Geophys. Res., 88, pp. 2431–2444.

    Article  ADS  Google Scholar 

  20. Lyzenga, G.A., Ahrens, T.J., Nellis, W.J., Mitchell, A.C. 1982, J. Chem. Phys. 76, pp. 6282–6286.

    Article  ADS  Google Scholar 

  21. Lyzenga, G.A., Ahrens, T.J. 1980, Geophys. Res. Lett. 7, pp. 141–144.

    Article  ADS  Google Scholar 

  22. McQueen, R.G., Marsh, S.P., Taylor, J.W., Fritz, J.N., Carter, W.J. 1970, in High Velocity Impact Phenomena, ed. by Kinslow, R., Academic Press, New York, pp. 294–419.

    Google Scholar 

  23. Marsh, S.P. 1980, LASL Shock Hugoniot Data, University of California Press, Berkeley, pp. 327.

    Google Scholar 

  24. Mitchell, A.C., Nellis, W.J. 1982, J. Chem. Phys. 76, pp. 6273–6281.

    Article  ADS  Google Scholar 

  25. Morrison, D. 1982, in Satellites of Jupiter, ed. by D. Morrison, U. Ariz. Press, Tucson, pp. 3–43.

    Google Scholar 

  26. Nellis, W.J., Ree, F.H., Trainor, R.J., Mitchell, A.C., Boslough, M.B. 1984, J. Chem. Phys. 80, pp. 2789–2799.

    Article  ADS  Google Scholar 

  27. O’Keefe, J.D., Ahrens, T.J. 1977, Proc. Lunar Sci. Conf. 8th, pp. 3357–3374.

    Google Scholar 

  28. Pollack, J.B., Fanale, F. 1982, in Satellites of Jupiter, ed. by D. Morrison, Univ. Ariz., Tucson, pp. 872–910.

    Google Scholar 

  29. Pollack, J.B., Reynolds, R.T. 1974, Icarus 21, pp. 248–253.

    Article  ADS  Google Scholar 

  30. Ree, F.H. 1982, J. Chem. Phys. 76, pp. 6287–6302.

    Article  ADS  Google Scholar 

  31. Rice, M.H., McQueen, R.G., Walsh, J.M. 1958, Solid State Phys. 6, pp. 1–63.

    Article  Google Scholar 

  32. Rice, M.H., Walsh, J.M. 1957, J. Chem. Phys. 26, pp. 824–830.

    Article  ADS  Google Scholar 

  33. Ross, J.E., Aller, L.H. 1976, Science 191, pp. 1223–1229.

    Article  ADS  Google Scholar 

  34. Shoemaker, E.M., Wolf, R.F., 1982, Satellites of Jupiter, ed. by D. Morrison, pp. 277–339, U. Ariz. Press.

    Google Scholar 

  35. Smith, B.A., Soderblom, L.A., Johnson, T.V., Ingersoll, A.P., Collins, S.A., Shoemaker, E.M,, Hunt, G.E., Masursky, H., Carr, M.H., Davies, M.E., Cook, A.F. II, Boyce, J., Danielson, G.E., Owen, T., Sagan, C., Beebe, R.F., Veverka, J., Strom, R.G., McCauley, J.F., Morrison, D., Briggs, G.A., Suomi, V.E. 1979a, Science 204, pp. 945–972.

    Article  ADS  Google Scholar 

  36. Smith, B.F., Soderblom, L.A., Beebe, R., Boyce, J., Briggs, G., Carr, M., Collins, S.A., Cook, A.F., Danielson, G.E., Davies, M.E., Hunt, G.E., Ingersoll, A., Johnson, T.V., McCauly, J., Masursky, H., Owen, T., Sagan, C., Shoemaker, E.M., Strom, S., Suomi, V.E., Veverka, J. 1979b, Science 206, pp. 927–950.

    Google Scholar 

  37. Smith, B.F., Soderblom, L.A, Beebe, R., Boyce, J., Briggs, G., Bunker, A., Collins, S.A., Hansen, C.F., Johnson, T.V., Mitchell, J.L., Terrille, R.J., Carr, M., Cook, A.F., Cuzzi, J., Pollack, J.B., Danielson, G.E., Ingersoll, A., Davies, M.E., Hunt, G., Masursky, H., Shoemaker, E.M., Morrison, D., Owen, T., Sagan, C., Veverka, J., Strom, J., Suomi, V.E. 1981, Science 212, pp. 163–191.

    Google Scholar 

  38. Smoluchowski, R. 1983, Science 222, pp. 161–163.

    Article  ADS  Google Scholar 

  39. Stone, E.C., Miner, E D. 1982, Science 215, pp. 499–504.

    Article  ADS  Google Scholar 

  40. Walsh, J.M., Rice, M.H. 1957, J. Chem. Phys. 26, pp. 815–823.

    Article  ADS  Google Scholar 

  41. Weast, R.C. 1982, CRC Handbook of Chemistry and Physics, 63rd Ed., Chemical Publ. Co., Cleveland.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 D. Reidel Publishing Company

About this chapter

Cite this chapter

Ahrens, T.J., O’Keefe, J.D. (1985). Shock Vaporization and the Accretion of the Icy Satellites of Jupiter and Saturn. In: Klinger, J., Benest, D., Dollfus, A., Smoluchowski, R. (eds) Ices in the Solar System. NATO ASI Series, vol 156. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-5418-2_43

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-5418-2_43

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8891-6

  • Online ISBN: 978-94-009-5418-2

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics