Subsurface Ice and Permafrost on Mars

  • Duwayne M. Anderson
Part of the NATO ASI Series book series (ASIC, volume 156)


Terrestrial permafrost varies widely in its physical and mechanical properties and behavior. Ice content, for example, may range from 0 to 100 % by volume. The types of subsurface ice are numerous and the crystal structure of terrestrial subsurface ice is variable. Most subsurface ice is hexagonal, Ice-I; clathrate structures are known, however. The ice content of permafrost is only a fraction, albeit the predominant one, of the water present. A significant portion of the water present exists in an unfrozen state and is distributed throughout the pore space and in interfacial areas. The proportion of ice to unfrozen water varies, in a characteristic manner, with temperature and solute concentration. These basic facts are important In determining the strength and deformation properties of permafrost and also its hydrological and electrical properties. Reliable relationships among these properties are derivable from basic thermodynamic theory and from empirical relationships recently established on the basis of laboratory and field data.

Permafrost exists at all latitudes on Mars and subsurface ice probably is abundant. The temperatures and pressures characteristic of each location or region determine, to a large extent, the depth and distribution of permafrost. Together with ground water salinity, they control the ice content, strength and deformation characteristics, in addition to other physical and electrical properties of local permafrost. Calculations based on the Viking Mission Data indicate that permafrost thicknesses range from about 3.5 km at the equator to approximately 8 km in the polar regions. The depths to the bottom of Martian permafrost are more than three times the depth characteristic of permafrost in terrestrial polar locations.

Martian permafrost, in general, is much colder than terrestrial permafrost. Consequently, the proportion of unfrozen water to ice generally is much lower. This, however, probably is somewhat offset by a significantly higher salinity of the Martian permafrost. The combination of low temperatures and great thicknesses of Martian permafrost, coupled with the low atmospheric pressure and very small snowfall, enhance the stability of the Martian surface. The “active layer” on Mars is extremely thin compared to that of terrestrial permafrost, making Martian permafrost more resistant to deformation and abrasion than is the case on Earth. The occurrence, quantities and behavior of subsurface ice, currently a matter of speculation and conjecture, is important in many respects. Its determination has been an objective of high priority in the exploration of Mars.


Unconfined Compressive Strength Freeze Soil Unfrozen Water Martian Surface Unfrozen Water Content 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. (1).
    Sinton, V. M. and Strong, J. (1960). Radiometric Observations of Mars. Astrophys. J., 131, pp. 459 - 469.ADSCrossRefGoogle Scholar
  2. (2).
    Leighton, R. B., and Murray, B. C. (1966). Behavior of Carbon Dioxide and other Volatiles on Mars. Science, 84, pp. 136 - 144.ADSCrossRefGoogle Scholar
  3. (3).
    Morrison, D., Sagan, C. and Pollack, J. B. (1969). Martian Temperatures and Thermal Properties. Icarus, 11, pp. 36 - 45.ADSCrossRefGoogle Scholar
  4. (4).
    Neugebauer, G., Munch, C., Chase Jr., S. C., Hatzenbeler, H., Miner, E. and Schofield, D. (1969). Mariner 1969: Preliminary Results of the Infrared Radiometer Experiment. Science, 166, pp. 98 - 99.ADSCrossRefGoogle Scholar
  5. (5).
    Biemann, K., Oro, J., Toulmin, III, P., Orgel, L. E., Nier, A. 0., Anderson, D. M., Simmonds, P. G., Flory, D., Diaz, A. V., Rushneck, D. R., Biller, J. E., and Lafleur, A. L. (1977). The Search for Organic Substances and Inorganic Volatile Compounds in the Surface of Mars. Journal of Geophysical Research, 82, pp. 4641 - 4658.ADSCrossRefGoogle Scholar
  6. (6).
    Anderson, D. M. (1978). Water in the Martian Regolith. Comparative Planetology, Academic Press, pp. 219 - 224.Google Scholar
  7. (7).
    Farmer, C. B., Davis, D. W., Holland, A. L., LaPort, D. D., and Doms, P. E. (1977). Mars: Water Vapor Observations from the Viking Orbiters. Journal of Geophysical Research, 82, pp. 4225 - 4248.ADSCrossRefGoogle Scholar
  8. (8).
    Farmer, C. B. and Doms, P. E. (1979). Global Seasonal Variations of Water Vapor on Mars and the Implications for Permafrost. Journal of Geophysical Research, 84, pp. 2881 - 2888.ADSCrossRefGoogle Scholar
  9. (9).
    Kieffer, H. H., Martin, T. Z., Peterfreund, A. R., Jakosky, B. M., Miner, E. D., Palluconi, F. D. (1977). Thermal and Albedo Mapping of Mars During the Viking Primary Mission, Journal of Geophysical Research, 84, pp. 4249 - 4291.ADSCrossRefGoogle Scholar
  10. (10).
    Murray, B. C. and Malin, M. C. (1973). Polar Volatiles on Mars — Theory Versus Observation. Science, 182, pp. 437 - 443.ADSCrossRefGoogle Scholar
  11. (11).
    Cutts, J. A., Blasius, K. R., Briggs, G. A., Carr, M. H., Greeley, R., and Masursky, H. (1976). North Polar Region of Mars: Imaging Results From Viking 2. Science, 194, pp. 1329 - 1337.ADSCrossRefGoogle Scholar
  12. (12).
    Miller, S. L., and Smythe, W. D. (1970). Carbon Dioxide Clathrate in The Martian Ice Cap. Science, 170, pp. 531 - 533.ADSCrossRefGoogle Scholar
  13. (13).
    Judge, A. (1982). Natural Gas Hydrates in Canada. “Proceedings Fourth Canadian Permafrost Conference”, National Research Council, Ottawa, Canada, pp. 320 - 328.Google Scholar
  14. (14).
    Weaver, J. S. and Stewart, J. M. (1982). In Situ Hydrates Under the Beaufort Sea Shelf. “Proceedings Fourth Canadian Permafrost Conference”, National Research Council, Ottawa, Canada, pp. 312 - 319.Google Scholar
  15. (15).
    Makogon, Y. F. (1982). Perspectives of the Development of Gas-Hydrate Deposits. “Proceedings Fourth Canadian Permafrost Conference”, National Research Council, Ottawa, Canada, pp. 299 - 304.Google Scholar
  16. (16).
    Kvenvolden, K. A. (1982). Occurrence and Origin of Marine Gas Hydrates. “Proceedings Fourth Canadian Permafrost Conference”, National Research Council, Ottawa, Canada, PP. 305 - 311.Google Scholar
  17. (17).
    Rossbacker, L. A. and Judson, J. (1981). Ground Ice on Mars: Inventory, Distribution, and Resulting Landforms. Icarus, 45, pp. 39 - 59.ADSCrossRefGoogle Scholar
  18. (18).
    Toksoz, M. N. and Hsui, A. T. (1978). Thermal History and Evolution of Mars. Icarus, 34, pp. 537 - 547.ADSCrossRefGoogle Scholar
  19. (19).
    Anderson, D. M., Gatto, L. W. and Ugolini, F. (1973). An Examination of Mariner 6 and 7 Imagery for Evidence of Permafrost Terrain on Mars. “International Conference on Permafrost, 2’d Yakutsk, Siberia, N. American Contribution”. National Academy of Science Pub., pp. 449 - 508.Google Scholar
  20. (20).
    Gatto, L. W. and Anderson, D. M. (1975). Alaskan Thermokarst Terrain and Possible Martian Analog. Science 188, no. 4185, pp. 255 - 257.ADSCrossRefGoogle Scholar
  21. (14).
    Coradini, M. and Flaraini, E. (1979). A Thermodynamical Study of the Martian Permafrost. Journal of Geophysical Research, 84, pp. 8115 - 8130.ADSCrossRefGoogle Scholar
  22. (15).
    Fanale, F. P., Salvail, J. R., Banerdt, W. B. and Saunders, R. J. (1982). Mars: The Regolith-Atmosphere-Cap System and Climate Change. Icarus, 50, pp. 381 - 407.ADSCrossRefGoogle Scholar
  23. (16).
    Hosier, C. L., Jenson, D. C. and Goldschlak, L. (1957). On the Aggregation of Ice Crystals to Form Snow. J. Meteorol., 14, pp. 415 - 420.CrossRefGoogle Scholar
  24. (17).
    Jellinek, H. H. G. (1967). Liquid-Like (Transition) Layer on Ice. J. Colloid Interface Sci., 25, pp. 192 - 205.CrossRefGoogle Scholar
  25. (18).
    Jellinek, H. H. G. and Ibrahim, S. H. (1967). Sintering of Powdered Ice. J. Colloid Interface Sci., 25, pp. 245 - 254.CrossRefGoogle Scholar
  26. (19).
    Hobbs, P. V. and Mason, B. J. (1964). The Sintering and Adhesion of Ice. Phil. Mag., 9, pp. 181 - 197.ADSCrossRefGoogle Scholar
  27. (20).
    Anderson, D. M. and Morgenstern, N. R. (1973). Physics, Chemistry and Mechanics of Frozen Ground. “International Conference on Permafrost, 2’d Yakutsk, Siberia, N. American Contribution”. National Academy of Sciences Pub., pp. 257 - 288.Google Scholar
  28. (21).
    Anderson, D. M. (1967). The Interface Between Ice and Silicate Surfaces. Journal of Colloid and Interface Science, 25, pp. 174 - 191.CrossRefGoogle Scholar
  29. (22).
    Anderson, D. M. and Tice, A. R. (1980). Low Temperature Phase Changes in Montmori1lonite and Nontronite at High Water Contents and High Salt Contents. Cold Regions Science and Technology, 3, pp. 139 - 144.CrossRefGoogle Scholar
  30. (23).
    Andersland, O. B. and Anderson, D. M. (1978). Geotechnical Engineering for Cold Regions. McGraw-Hill.Google Scholar
  31. (31).
    Michel, B. (1977). A Mechanical Model of Creep of Poiycrystal1ine Ice. Canadian Geotechnical Journal, 15, pp. 155 - 170.CrossRefGoogle Scholar
  32. (32).
    Pusch, R. (1980). Creep of Frozen Soil, A Preliminary Physical Interpretation in “Proceedings Second International Symposium on Ground Freezing.” Norwegian Institute of Technology, Trondheim, Norway, pp. 190 - 201.Google Scholar
  33. (33).
    Steinemann, S. (1958). Experimentelle Untersuchuangen zur Plastizitat von Eis. Beitrage zur Geologie der Schweiz. Hydrologie No. 10. Kommissionsverlag Kummerly amp; Frey Ag., Geographischer Verlag, Bern.Google Scholar
  34. (34).
    Gold, G. W. (1960). The Cracking Activity in Ice During Creep. Can. J. Phys., 38, pp. 1137 - 1148.ADSCrossRefGoogle Scholar
  35. (35).
    Ting, J. M. and Martin, R. T. (1979). Application of the Andrade Equation to Creep Data for Ice and Frozen Soil. Cold Regions Sci. and Technology, 1, pp. 29 - 36.CrossRefGoogle Scholar
  36. (36).
    Sayles, F. H. (1966). Low Temperature Soil Mechanics. U.S. Army Cold Reg. Res. Eng. Lab. Tech. Note, Hanover, N. H.Google Scholar
  37. (37).
    Wolfe, L. H. and Thieme, J. O. (1967). Physical and Thermal Properties of Frozen Soil and Ice. Soc. Pet. Eng. J., 4, pp. 67 - 72.Google Scholar
  38. (38).
    Butkovich, T. R. (1954). Ultimate Strength of Ice. U.S. Army Res. Rep. 11.Google Scholar
  39. (39).
    Banin, A. and Anderson, D. M. (1974). Effects of Salt Concentration Changes During Freezing on the Unfrozen Water Content of Porous Materials. J. Water Resources Research, 10, pp. 124 - 128.ADSCrossRefGoogle Scholar

Copyright information

© D. Reidel Publishing Company 1985

Authors and Affiliations

  • Duwayne M. Anderson
    • 1
  1. 1.Texas A&M UniversityUSA

Personalised recommendations