Decomposition Theorems for Bergman Spaces and the IR Applications

Part of the NATO ASI series book series (ASIC, volume 153)


We sketch a decomposition theorem for functions in Bergman spaces and give applications.


Hardy Space Toeplitz Operator Besov Space Bergman Space Decomposition Theorem 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. [A]
    Amar, E. “Suites d’interpolation pour les caisses de Bergman de la boule et du polydisque de Cn”. 1978, Canad. J. Math 30, pp. 711–737.MathSciNetzbMATHCrossRefGoogle Scholar
  2. [ACS]
    Axler, S.; Chang, S.-Y.A; and Sarason, D. “Products of Toeplitz operators”. 1978, Integral Equations and Operator Theory 1, pp. 285–309.MathSciNetGoogle Scholar
  3. [BCFJ]
    Beckner, W.; Calderòn, A. P.; Fefferman, R.; and Jones, P.; eds. “Conference on harmonic analysis in honor of Antoni Zygmund”. 1983, Wadsworth Inc., Belmont, Ca.Google Scholar
  4. [B]
    Bui, H.-Q. “Representation theorems and atomic decomposition of Besov spaces”. 1984, manuscript.Google Scholar
  5. [CGT]
    Chao, J.-A.; Gilbert, J.; and Tomas, P. “Molecular decompositions in Hp theory”. 1980, Supp. Rend. Circolo mate, Palermo, ser II, pp. 115–119.Google Scholar
  6. [CGT]
    Chao, J.-A.; Gilbert, J.; and Tomas, P. “Molecular decompositions and Beurling spaces in Hp theory”. 1982, preprint.Google Scholar
  7. [C]
    Cohen, G. “Hardy spaces: Atomic decomposition, area function and some new spaces of distributions”. June 1982, Ph.D. Dissertation, U. of Chicago, Chicago, Il.Google Scholar
  8. [CM1]
    Coifman, R. R. and Meyer, Y. “Fourier analysis of multilinear convolution Calderòn’s theorem, and analysis on Lipschitz curves”. 1980, Lecture Notes in Mathematics 779, pp. 104–122.Google Scholar
  9. [CM2]
    Coifman, R. R. and Meyer, Y. “Le theorème de Calderòn par les methods de variable réelle”. 1979, C. R. Acad. Sci., Paris, series A, 289.Google Scholar
  10. [CMS1]
    Coifman, R. R.; Meyer, Y.; and Stein, E.M. “Un nouvel espace fonctionnel adapte a l’étude des operateurs definis par des integrales singulieres”. 1983, Lecture Notes in Mathematics 992, pp. 1–15.Google Scholar
  11. [CMS2]
    Coifman, R. R.; Meyer, Y.; and Stein, E.M. “Some new function spaces and their applications to harmonic analysis”. 1984, preprint.Google Scholar
  12. [CR]
    Coifman, R. R. and Rochberg, R. “Representation theorems for holomorphic and harmonic functions in Lp”. 1980, Asterisque 77, pp. 11–66.MathSciNetzbMATHGoogle Scholar
  13. [CR2]
    Coifman, R. R. and Rochberg, R. Correction to [CR], in preparation.Google Scholar
  14. [CW]
    Coifman, R. R. and Weiss, G. “Extensions of Hardy spaces and their use in analysis”. 1977, Bull. Amer. Math. Soc. 83, pp. 569–645.MathSciNetzbMATHCrossRefGoogle Scholar
  15. [F]
    Frazier, M. B. Jawerth, 1984, manuscript.Google Scholar
  16. [G]
    Garnett, J. “Bounded Analytic Functions”. 1981, Academic Press, New York.zbMATHGoogle Scholar
  17. [JP]
    Janson, S. and Peetre, J. “Higher order commutators of singular integral operators”. 1984, manuscript.Google Scholar
  18. [JW]
    Janson, S. and Wolff, T. “Schatten classes and commutators of singular integral operators”. 1982, Ark. Mat. 20, pp. 301–310.MathSciNetzbMATHCrossRefGoogle Scholar
  19. [J]
    Jodeit, M. “On the decomposition of L11 (R) functions into humps, in [BCFJ].Google Scholar
  20. [Ko]
    Koosis, P. “Lectures on HP spaces”. 1980, L. M. S. Lecture Notes Series 40, Cambridge Univ. Press, London.Google Scholar
  21. [K]
    Kra, I. “Automorphic forms and Kleinian groups”. 1972, W.A. Benjamin Inc., Reading Mass.zbMATHGoogle Scholar
  22. [L1]
    Luecking, D. “Closed range restriction operators on weighted Bergman spaces”. 1984, Pac. J. Math 110, pp. 145–160.MathSciNetzbMATHGoogle Scholar
  23. [L2]
    Luecking, D. “Forward and reverse Carleson inequalities for functions in Bergman spaces and their derivatives”. Amer. J. Math., to appear.Google Scholar
  24. [L3]
    Luecking, D. “Representation and duality in weighted spaces of analytic functions”. 1984, manuscript.Google Scholar
  25. [M]
    Merryfield, K. “The molecular decomposition of certain Bergman spaces”. 1984, manuscript.Google Scholar
  26. [Pe]
    Peetre, J. “New thoughts of Besov spaces”. 1976, Duke University Math Series 1, Dept. Math., Duke U., Durham, NC.Google Scholar
  27. [Pe2]
    Peetre, J. “Hankel operators rational approximation and allied questions of analysis”. 1983, Second Edmonton Conference on Approximation Theory, CMS Conference Proceedings 3, Amer. Math. Soc. Providence, RI, pp. 287–332.Google Scholar
  28. [P1]
    Peller, V. V. “Smooth Hankel operators and their applications”. 1980, Soviet Math. Dokl. 21.Google Scholar
  29. [P2]
    Peller, V. V. “Hankel operators of the class ☆p and their applications (rational approximation, Gaussian processes, majorization problems for operators)”. 1982, Math. USSR Sbornik 41, pp. 443–479.zbMATHCrossRefGoogle Scholar
  30. [P3]
    Peller, V. V. “Vectorial Hankel operators, commutators, and related operators of Schatten-von Neumann class ☆p”. 1983, Integral Equations and Operator Theory 5, pp. 244–272.MathSciNetCrossRefGoogle Scholar
  31. [PH]
    Peller, V. V. and Hruscev, S.V. “Hankel operators, best approximations, and stationary Gaussian processes, I, II, III”. 1982, Russian Math. Surveys 37, pp 61–144.zbMATHCrossRefGoogle Scholar
  32. [Po]
    Power, S. C. “Hankel operators on Hilbert space”. 1980, Bull. Lond. Math. Soc. 12, pp. 422–442.MathSciNetzbMATHCrossRefGoogle Scholar
  33. [Po2]
    Power, S. C. “Hankel operators on Hilbert space”. 1982, Pitmann Books LTD., London.zbMATHGoogle Scholar
  34. [RT]
    Ricci, F. and Taibleson, M. “Boundary values of harmonic functions in mixed norm spaces and their atomic structure”. 1983, Ann. Sc. Norm. Super. Pisa, Cl. Sci., IV, Ser. 10, pp. 1–54.MathSciNetzbMATHGoogle Scholar
  35. [R1]
    Rochberg, R. “Trace ideal criteria for Hankel operators and commutators”. 1981, Indiana U. Math. J. 31, pp. 913–925.MathSciNetCrossRefGoogle Scholar
  36. [R2]
    Rochberg, R. “Interpolation by functions in Bergman spaces”. 1982, Mich. Math. J. 29, pp. 229–236.MathSciNetzbMATHCrossRefGoogle Scholar
  37. [RS]
    Rochberg, R. and Semmes, S. “A decomposition theorem for BMO and applications”. 1984, preprint.Google Scholar
  38. [S]
    Semmes, S. “Trace ideal criteria for Hankel operators and applications to Besov spaces”. 1984, Integral Equations and Operator Theory 7, pp. 241–281.MathSciNetzbMATHCrossRefGoogle Scholar
  39. [S2]
    Semmes, S. “The Cauchy integral and related operators on smooth curves”. 1983, Ph.D. thesis, Washington U., St. Louis, MO.Google Scholar
  40. [So]
    Soria, F. “Characterization of classes of functions generated by blocks and associated Hardy spaces”. 1984, preprint.Google Scholar
  41. [Su]
    Sundberg, C. “Interpolation of values by functions in BMO”. 1983, preprint.Google Scholar
  42. [TW]
    Taibleson, M. and Weiss, G. “Certain function spaces connected with almost everywhere convergence of Fourier series”. [BCFJ], pp. 95–113.Google Scholar
  43. [U]
    Uchiyama, A. “A constructive proof of the Fefferman-Stein decomposition of BMO (Rn)”. 1982, Acta Math. 148, pp. 215–241.MathSciNetzbMATHCrossRefGoogle Scholar
  44. [V]
    Volberg, A. “Two remarks concerning the theorem of A. Axler, S.-Y.A. Chang and D. Sarason”. J. Operator Theory 7, pp. 209–218.Google Scholar
  45. [W]
    Wilson, M. Manuscript, 1984.Google Scholar

Copyright information

© D. Reidel Publishing Company 1985

Authors and Affiliations

  1. 1.Washington UniversitySt. LouisUSA

Personalised recommendations