Advertisement

Bloch Functions: The Basic Theory

Chapter
Part of the NATO ASI series book series (ASIC, volume 153)

Abstract

In these lectures the basic theory of Bloch functions is presented. Emphasis is given to connections, which Bloch functions provide, between seemingly disparate topics in function theory and harmonic analysis. The final section is a report on progress on the open questions posed in [3].

Keywords

Basic Theory Bergman Space Carleson Measure Bloch Function LIPSCHITZ Space 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Bibliography

  1. 1.
    L. V. Ahlfors, An extension of Sehwavz’s Lemma, Trans. Amer. Math. Soc., 43 (1938), pp. 359–364.MathSciNetGoogle Scholar
  2. 2.
    L. V. Ahlfors and H. Grunsky, Über die Blochsche Konstante, Hath. Zeitschr., 42 (1937), pp. 671–673.MathSciNetCrossRefGoogle Scholar
  3. 3.
    J. M. Anderson, J. Clunie and Ch. Pommerenke, On Bloch functions and normal functions, J. reine angew. Math., 270 (1974), pp. 12–37.MathSciNetzbMATHGoogle Scholar
  4. 4.
    J. M. Anderson and A. L. Shields, Coefficient multipliers of Bloch functions, Trans. Amer. Math. Soc, 224 (1976), pp. 255–265.MathSciNetCrossRefGoogle Scholar
  5. 5.
    J. M. Anderson, On division by inner factors, Comment. Math. Helv., 54 (1979), pp. 309–317.MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    K. Astala and F. W. Gehring, Injectivity criteria and the quasidisk, Complex Variables, 3 (1983), pp. 45–54.MathSciNetGoogle Scholar
  7. 7.
    J. Becker, Löwnersche Differentialgleichung und quasikonform fortsetzbare schlichte Functionen, J. reine angew. Math., 255 (1972), pp. 22–43.Google Scholar
  8. 8.
    J. Becker and Ch. Pommerenke, Über die quasikonforme Fortsetzung schlichter Functionen, Math. Zeitschr., 161 (1978), pp. 69–80.MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    J. Becker and Ch. Pommerenke, Schlichtheitskriterien und Jordangebiete, Kanuskript, Berlin, 1983.Google Scholar
  10. 10.
    G. Bennett, D. A. Stegenga, and R. M. Timoney, Coefficients of Bloch and Lipschitz functions, Illinois J. Math., 25 (1981), pp. 520–531.MathSciNetzbMATHGoogle Scholar
  11. 11.
    L. Bers, Uniformtzation, Moduli and Kleinian groups, Bull. London Math. Soc, 4 (1972), pp. 257–300.MathSciNetzbMATHCrossRefGoogle Scholar
  12. 12.
    R. Burckel, An introduction to classical complex analysis, Vol. I, Academic Press, New York, 1979.Google Scholar
  13. 13.
    D. M. Campbell and R. J. Leach, A survey of Hp multipliers as related to classical function theory, Complex Variables, 3 (1983), pp. 85–111.MathSciNetGoogle Scholar
  14. 14.
    R. R. Coifman, R. Rochberg and G. Weiss, Factorization theorems for Hardy spaces in several variables, Ann. of Math (2), 103 (1976), pp. 611–635.MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    S. T. Davies, Ph.D. Thesis, Imperial College, London (1977).Google Scholar
  16. 16.
    P. L. Duren, Theory of HP spaces, Academic Press, New York, 1970.zbMATHGoogle Scholar
  17. 17.
    P. L. Duren, B. W. Romberg and A. L. Shields, Linear functionate on Hp spaces with 0 < p < 1, J. Reine angew. Math., 238 (1969), pp. 32–60.MathSciNetzbMATHGoogle Scholar
  18. 18.
    P. L. Duren, H. S. Shapiro and A. L. Shields, Singular measures and domains not of Smirnov type, Duke Math. J., 33 (1966), pp. 247–254.MathSciNetzbMATHCrossRefGoogle Scholar
  19. 19.
    J. L. Fernández, On the coefficients of Btoch functions, J. London Math. Soc. (2), 29 (1984), pp. 94–102.MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    J. L. Fernández, On the growth and coefficients of analytic functions, manuscript, Madison (1983).Google Scholar
  21. 21.
    J. B. Garnett, Bounded Analytic Functions, Academic Press, New York, 1981.zbMATHGoogle Scholar
  22. 22.
    F. W. Gehring, Spirals and the universal Teichmuller space, Acta. Math., 141 (1978), pp. 99–113.MathSciNetzbMATHCrossRefGoogle Scholar
  23. 23.
    W. K. Hayman, Uniformly normal families, Lectures on functions of a complex variable, Ann Arbor (1955).Google Scholar
  24. 24.
    M. Heins, On a class of conformal metrics, Nagoya Math. J., 21 (1962), pp. 1–60.MathSciNetzbMATHGoogle Scholar
  25. 25.
    P. Koosis, Lectures on Hp spaces, London Math. Soc. Lecture Note Series 40, Cambridge Univ. Press, London, 1980.Google Scholar
  26. 26.
    P. A. Lappan, Non-normal sums and products of unbounded normal functions, Michigan Math. J., 8 (1961), pp. 187–192.MathSciNetzbMATHCrossRefGoogle Scholar
  27. 27.
    O. Lehto and K. I. Virtanen, Boundary behaviour and normal meromorphic functions, Acta. Math., 97 (1957), pp. 47–65.MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    Ch. Pommerenke, On Bloch functions, J. London Math. Soc. (2), 2 (1970), pp. 689–695.MathSciNetzbMATHGoogle Scholar
  29. 29.
    Ch. Pommerenke, Schlichte Funktionen und analytische Funktionen von beschränkter mittlerer Oszillation, Comment. Math. Helv., 52 (1977), pp. 591–602.MathSciNetzbMATHCrossRefGoogle Scholar
  30. 30.
    L. A. Rubel and A. L. Shields, The second duals of certain spaces of analytic functions, J. Australian Math. Soc, 11 (1970), pp. 276–280.MathSciNetzbMATHCrossRefGoogle Scholar
  31. 31.
    H. S. Shapiro, Weakly invertible elements in certain function spaces, and generators in1, Michigan Math. J., 11 (1964), pp. 161–165.MathSciNetzbMATHCrossRefGoogle Scholar
  32. 32.
    H. S. Shapiro, Some remarks on the weighted polynomial approximation of holomorphic functions, (in Russian), Mat. Sbornik, 73 (1967), pp. 320–330.Google Scholar
  33. 33.
    A. E. Taylor, Banaoh spaces of functions analytic in the unit circle, J. Studia Math., 11 (1950), pp. 145–170.zbMATHGoogle Scholar
  34. 34.
    A. Zygmund, Smooth functions, Duke Math. J., 12 (1945), pp. 47–76.MathSciNetzbMATHCrossRefGoogle Scholar
  35. 35.
    A. Zygmund, Trigonometric Series, Vol. II, Cambridge Univ. Press, London, 1959.zbMATHGoogle Scholar

Copyright information

© D. Reidel Publishing Company 1985

Authors and Affiliations

  1. 1.Mathematics DepartmentUniversity CollegeLondonUK

Personalised recommendations