Skip to main content

Chemical Models of Weathering in Soils

  • Chapter
The Chemistry of Weathering

Part of the book series: Nato ASI Series ((ASIC,volume 149))

Abstract

Chemical thermodynamics augmented by the Gay-Lussac-Ostwald step rule provides a theoretical approach to weathering phenomena in soils that requires few ad hoc constitutive assumptions. The efficacy of this approach is illustrated with several examples of natural and anthropogenically-induced weathering reactions involving kaolinite. In soils, kaolinite exhibits a continuum of structural disorder that is reflected by a corresponding spectrum of solubility product constants. The composition of the soil solution vis-à-vis this spectrum can be interpreted with the help of the step rule. The concept of a soil kaolinite continuum appears necessary to the evaluation of activity-ratio diagrams and other thermodynamic constructs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Sposito, G. 1981, “The Thermodynamics of Soil Solutions”, Clarendon Press, Oxford.

    Google Scholar 

  2. Sposito, G. 1984, “Thermodynamics of the soil solution”, in “Soil Physical Chemistry”, D. L. Sparks, ed., C. R. C. Press, Boca Raton.

    Google Scholar 

  3. Lindsay, W. L. 1979, “Chemical Equilibria in Soils”, John Wiley, New York.

    Google Scholar 

  4. Stumm, W. and Morgan, J. J. 1981, “Aquatic Chemistry”, John Wiley, New York.

    Google Scholar 

  5. Lewis, G. N. and Randall, M. 1923, “Thermodynamics and the Free Energy of Chemical Substances”, McGraw-Hill, New York.

    Google Scholar 

  6. Hemingway, B. S. 1982, “Gibbs free energies of formation of Bayerite, Nordstrandite, A1(0H)2+, and A1(0H)2, aluminum mobility, and the formation of bauxites and laterites,” Advan. Phys. Geochem. 2, pp. 285–316.

    Google Scholar 

  7. Dixon, J. B. and Weed, S. B. 1977, “Minerals in Soil Environments”, Soil Science Society of America, Madison.

    Google Scholar 

  8. Kittrick, J. A. 1980, “Gibbsite and kaolinite solubilities by immiscible displacement of equilibrium solutions,” Soil Sci. Soc. Am. J. 44, pp. 139–142.

    Article  Google Scholar 

  9. Karathansas, A. D. and Hajek, B. F. 1983, “Transformation of smectite to kaolinite in naturally acid soil systems: Structural and thermodynamic considerations,” Soil Sci. Soc. Am. J. 47, pp. 158–163.

    Article  Google Scholar 

  10. Karathanasis, A. D., Adams, F. and Hajek, B. F. 1983, “Stability relationships in kaolinite, gibbsite, and Al- hydroxy interlayered vermiculite soil,” Soil Sci. Soc. Am. J. 47, pp. 1247–1251.

    Article  Google Scholar 

  11. Bourrie, G. and Grimaldi, C. 1979, “Premiers resultats concernant la composition chimique des solutions issues de sols bruns acides sur granite en climat tempere oceanique: Donnees naturelles et experimentales,” in “Migrations Organo-Minerales dans les Sols Temp£res”, Colloques international du C.N.R.S., no. 303, pp. 41–8.

    Google Scholar 

  12. Singer, A. and Navrot, J. 1977, “Clay formation from basic volcanic rocks in a humid Mediterranean climate,” Soil Sci. Soc. Am. J. 41, pp. 645–650.

    Article  Google Scholar 

  13. Aurousseau, P., Curmi, P. and Charpentier, S. 1983, “Les vermiculites hydroxy-alumineuses dans des sols et les formations d’alteration du massif Armoricain: Approches mineralogique, microanalytique et thermodynamique,” Geoderma 31, pp. 17–40.

    Article  Google Scholar 

  14. Brindley, G. W. 1980, “Order-disorder in clay mineral structures,” in “Crystal Structures of Clay Minerals and their X-ray Identification”, G. W. Brindley and G. Brown, Mineralogical Society, London, pp. 125–195.

    Google Scholar 

  15. Wagman, D. D., Evans, W. H., Parker, V. B., Schumm, R. H., Halow, I., Bailey, S. M., Churney, K. L. and Nuttall, R. L. 1982, “The NBS tables of chemical thermodynamic properties,” J. Phys. Chem. Ref. Data 11, Supp. 2, pp. 1–392.

    Google Scholar 

  16. Calvert, C. S., Buol, S. W. and Weed, S. B. 1980, “Mineralogical characteristics and transformations of a vertical rock-saprolite-soil sequence in the North Carolina Piedmont: II. Feldspar alteration products-their transformations through the profile,” Soil Sci. Soc. Am. J. 44, pp. 1104–1112.

    Article  Google Scholar 

  17. Weaver, C. E. and Pollard, L. D. 1973, “The Chemistry of Clay Minerals”, Elsevier, Amsterdam.

    Google Scholar 

  18. Misra, U. K. and Upchurch, W. J. 1976, “Free energy of formation of beidellite from apparent solubility measurements,” Clays and Clay Min. 24, pp. 327–331.

    Article  Google Scholar 

  19. Bassett, R. L., Kharaka, Y. K. and Langmuir, D. 1979, “Critical review of the equilibrium constants for kaolinite and sepiolite,” in “Chemical Modeling in Aqueous Systems”, E. A. Jenne, ed., Am. Chem. Soc., Washington, D.C., pp. 389–400.

    Chapter  Google Scholar 

  20. Marshall, C. E., Chowdhury, M. Y. and Upchurch, W. J. 1973, “Lysimetric and chemical investigations of pedological changes. Part 2. Equilibration of profile samples with aqueous solutions,” Soil Sci. 116, pp. 336–358.

    Article  Google Scholar 

  21. Misra, U. K., Upchurch, W. J. and Marshall, C. E. 1976, “Lysimetric and chemical investigations of pedological changes: Part 3. Relative changes in the potassium- and magnesium-treated profiles and leaching losses,” Soil Sci. 121, pp. 323–331.

    Article  Google Scholar 

  22. Misra, U. K., Upchurch, W. J. and Marshall, C. E. 1976, “Lysimetric and chemical investigations of pedological changes: Part 4. Mineral equilibria in relation to potassium- and magnesium-enriched environment in the profile,” Soil Sci. 122, pp. 25–35.

    Article  Google Scholar 

  23. Mattigod, S. V. and Sposito, G. 1978, “Improved method for estimating the standard free energies for formation (AGf,298.15) of smectites,” Geochim. et Cosmochim. Acta 42, pp. 1753–1762.

    Google Scholar 

  24. Kirkland, D. L. and Hajek, B. F. 1972, “Formula derivation of Al-interlayered vermiculite in selected soil clays,” Soil Sci. 114, pp. 317–322.

    Article  Google Scholar 

  25. Veith, J. A. and Sposito, G. 1977, “Reactions of alumino- silicates, aluminum hydrous oxides, and aluminum oxide with o-phosphate: The formation of X-ray amorphous analogs of variscite and montebrasite,” Soil Sci. Soc. Am. J. 41, pp. 870–876.

    Article  Google Scholar 

  26. Pavan, M. A., Bingham, F. T. and Pratt, P. R. 1984, “Redistribution of exchangeable calcium, magnesium, an aluminum following lime or gypsum applications to a Brazilian Oxisol,” Soil Sci. Soc. Am. J. 48, pp. 33–38.

    Google Scholar 

  27. Nordstrom, D. K. 1982, “The effect of sulfate on aluminum concentrations in natural waters: Some stability relations in the sytem A12O3-SO3-H2O at 298 K,” Geochim. et Cosmochim. Acta 46, pp. 681 - 692.

    Article  Google Scholar 

  28. Kittrick, J. A. 1973, “Mica-derived vermiculites as unstable intermediates,” Clays and Clay Min. 21, pp. 479–488.

    Article  Google Scholar 

  29. Henderson, J. A., Doner, H. E., Weaver, R. M., Syers, J. K. and Jackson, M. L. 1976, “Cation and silica relationships of mica weathering to vermiculite in calcareous Harps soil,” Clays and Clay Min. 24, pp. 93–100.

    Article  Google Scholar 

  30. Lippmann, F. 1977, “The solubility products of complex minerals, mixed crystals, and three-layer clay minerals,” N. Jb. Miner. Abh. 130, pp. 243–263.

    Google Scholar 

  31. Lippmann, F. 1982, Proc. Int. Clay Conf. 1981, “The thermodynamic status of clay minerals,” pp. 475–485.

    Google Scholar 

  32. Aagard, P. and Helgeson, H. C. 1983, “Activity/composition relations among silicates and aqueous solutions: II. Chemical and thermodynamic consequences of ideal mixing of atoms on homological sites in montmorillonites, illites, and mixed-layer clays,” Clays and Clay Min. 31, pp. 207–217.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 D. Reidel Publishing Company

About this chapter

Cite this chapter

Sposito, G. (1985). Chemical Models of Weathering in Soils. In: Drever, J.I. (eds) The Chemistry of Weathering. Nato ASI Series, vol 149. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-5333-8_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-5333-8_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8855-8

  • Online ISBN: 978-94-009-5333-8

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics