Does the Bell Inequality Hold for All Local Theories ?

  • Thomas D. Angelidis
Part of the Fundamental Theories of Physics book series (FTPH, volume 10)


The claim that the Bell inequality D(a,b)≦ 2 is valid for all local theories is criticised. The criticism is based on the author’s proof that this universality claim is incompatible with the conservation law of angular momentum. There exists an infinity of counterexamples to the universality claim made for D(a,b)≦2. So, Bell offers no valid proof of the non-locality of the quantum formalism; consequently the experiments culminating in the Aspect experiment with the switches cannot be said to refute Einsteinian locality.


Angular Momentum Total Angular Momentum Local Theory Bell Inequality Quantum Formalism 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    A. Einstein, Dialectica 2, 320 (1948).zbMATHCrossRefGoogle Scholar
  2. 2.
    M. Jammer, The Philosophy of Quantum Mechanics (John Wiley, New York, 1974 ), pp. 115–119, 307.Google Scholar
  3. 3.
    K.R. Popper, Quantum Theory and the Schism in Physics (Hutchinson, London, 1982 and Rowan and Littlefield, Totowa, New Jersey, 1982 ), pp. 20–22.Google Scholar
  4. 4.
    J.S. Bell, Physics (N.Y.) 1, 195 (1964).Google Scholar
  5. 5.
    J.S. Bell, in Foundations of Quantum Mechanics, B. d’Espagnat, ed., ( Academic Press, New York, 1971 ), p. 178.Google Scholar
  6. 6.
    A. Aspect, P. Grangier, and G. Roger, Phys. Rev. Lett. 47 460 (1981); Phys. Rev. Lett. 49, 91 (1982).Google Scholar
  7. 7.
    A. Aspect, J. Dalibard, and G. Roger, Phys. Rev. Lett. 49, 1804 (1982).MathSciNetADSCrossRefGoogle Scholar
  8. 8.
    J.S. Bell, private communication (23 June, 1982); Bell’s own explicit universality claim, namely that “Bell’s theorem is valid for arbitrary p(A),” clearly shows that Bell has not specified any particular class to which the functions (p,A,B) have to belong. In other words, the class to which (p,A,B) belong is assumed by Bell to be arbitrary.Google Scholar
  9. 9.
    K.R. Popper, private communication.Google Scholar
  10. 10.
    J.F. Clauser and M.A. Home, Phys. Rev. D 10, 526 (1974).Google Scholar
  11. 11.
    J.F. Clauser and A. Shimony, Rep. Prog. Phys. 41, 1881 (1978).ADSCrossRefGoogle Scholar
  12. 12.
    Th. D. Angelidis, Phys. Rev. Lett. 51, 1819 (1983).Google Scholar
  13. 13.
    R.D. Richtmyer, Principles of Advanced Mathematical Physics (Springer-Verlag, New York, 1978 ), pp. 4–8, 21.Google Scholar
  14. 14.
    J.S. Bell, private communication (4 June, 1982 ).Google Scholar
  15. 15.
    J.F. Clauser, M.A. Home, A. Shimony, and R.A. Holt, Phys. Rev. Lett. 23, 880 (1969).ADSCrossRefGoogle Scholar
  16. 16.
    E.P. Wigner, Z. Physik 133, 101 (1952).MathSciNetADSzbMATHCrossRefGoogle Scholar
  17. 17.
    V.B. Berestetskii, E.M. Lifshitz, and L.P. Pitaevskii, Rela¬tivistic Quantum Theory, Part 1 (Pergamon Press, Oxford, 1971 ), pp. 22, 47.Google Scholar
  18. 18.
    G. Backenstoss, B.D. Hyams, G. Knop, P.C. Marin, and U. Stier- lin, Phys. Rev. Lett. 6, 415 (1961); M. Bardon, P. Franzini, and J. Lee, Phys. Rev. Lett. 7_, 23, (1961).Google Scholar
  19. 19.
    Y., Choquet, C. Dewitt, and M. Dillard, Analysis, Manifolds and Physics ( North-Holland, Amsterdam, 1977 ), p. 11.Google Scholar

Copyright information

© D. Reidel Publishing Company 1985

Authors and Affiliations

  • Thomas D. Angelidis
    • 1
  1. 1.University College LondonLondonEngland

Personalised recommendations