Advertisement

Quantum Effects in the Interference of Light

  • L. Mandel
Part of the Fundamental Theories of Physics book series (FTPH, volume 10)

Abstract

Interference effects produced by two sources of light are discussed within the framework of the quantum electrodynamic interpretation. Interference should disappear when all the source atoms are in the fully excited state, and this prediction may distinguish between quantum mechanics and various guided wave theories. The introduction of a light amplifier into an interferometer arm cannot unambiguously determine the path of the photon, because of spontaneous emission effects. Quantum mechanics, like classical wave optics, therefore predicts only a reduction of visibility in such interference experiments. In the special case of an interference experiment in which the two light sources consist of two single atoms, two photons cannot be found simultaneously at two positions that are separated by an odd number of half interference fringes. This quantum mechanical prediction amounts to another kind of EPR paradox, and should lend itself to another experimental test of the theory.

Keywords

Interference Effect Interference Pattern Interference Fringe Probability Amplitude Interference Experiment 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    L. de Broglie, Non-Linear Wave Mechanics: A Causal Interpretation (Elsevier, Amsterdam, 1960); The Current Interpretation of Wave Mechanics: A Critical Study (Elsevier, Amsterdam, 1964); Ann. Fond. L. de Broglie 2, 1 (1977).zbMATHGoogle Scholar
  2. 2.
    L. de Broglie and J. Andrade E. Silva, Phys. Rev. 172, 1284 (1968).Google Scholar
  3. 3.
    F. Selleri and G. Tarozzi, Nuov. Cim. B 43, 31 (1978); F. Selleri, Found. Phys. 12, 1087 (1982).Google Scholar
  4. 4.
    A. Garuccio and J.-P. Vigier, Found. Phys. 10, 797 (1980).ADSCrossRefGoogle Scholar
  5. 5.
    N. Cufaro-Petroni and J.-P. Vigier, Phys. Lett. 93A, 383 (1983).MathSciNetCrossRefGoogle Scholar
  6. 6.
    P.A.M. Dirac, The Principles of Quantum Mechanics (Oxford University Press, Oxford, 1947), 3rd ed., Chap. 1.Google Scholar
  7. 7.
    R. L. Pfleegor and L. Mandel, Phys. Rev. 159, 1084 (1967); J. Opt. Soc. Am. 58, 946 (1968); L. Mandel, in Quantum Optics, R. J. Glauber, ed. ( Academic Press, New York, 1969 ), p. 176.Google Scholar
  8. 8.
    L. Mandel, Phys. Lett. 89A, 325 (1982).CrossRefGoogle Scholar
  9. 9.
    A. Garuccio, K. R. Popper, and J.-P. Vigier, Phys. Lett. 86A, 397 (1981).CrossRefGoogle Scholar
  10. 10.
    A. Garuccio, V. Rapisarda, and J.-P. Vigier, Phys. Lett. 90A, 17 (1982).CrossRefGoogle Scholar
  11. 11.
    W. K. Wootters and W. H. Zurek, Nature 299, 802 (1982).ADSCrossRefGoogle Scholar
  12. 12.
    L. Mandel, Nature 304, 188 (1983).ADSCrossRefGoogle Scholar
  13. 13.
    P. W. Milonni and M. L. Hardies, Phys. Lett. 92A, 321 (1982).CrossRefGoogle Scholar
  14. 14.
    S. Friberg and L. Mandel, Opt. Comm. 46, 141 (1983); and in Coherence and Quantum Optics V, L. Mandel and E. Wolf, eds. ( Plenum, New York, 1984 ), p. 465.Google Scholar
  15. 15.
    L. Mandel, Phys. Rev. A 28, 929 (1983).MathSciNetADSCrossRefGoogle Scholar
  16. 16.
    L. Mandel, E.C.G. Sudarshan, and E. Wolf, Proc. Phys. Soc. (London) 84, 435 (1964); L. Mandel and E. Wolf, Rev. Mod. Phys. 37, 231 (1965).Google Scholar
  17. 17.
    R. J. Glauber, Phys. Rev. 130, 2529 (1963); 131, 2766 (1963).Google Scholar

Copyright information

© D. Reidel Publishing Company 1985

Authors and Affiliations

  • L. Mandel
    • 1
  1. 1.Department of Physics and AstronomyUniversity of RochesterRochesterUSA

Personalised recommendations