Advertisement

Nonlocal Quantum Potential Interpretation of Relativistic Actions at a Distance in Many-Body Problems

  • J. P. Vigier
Part of the Fundamental Theories of Physics book series (FTPH, volume 10)

Abstract

Relativistic constraints on the behaviour of a system of N scalar particles correlated by causal many-body actions at a distance interactions are analysed in relativistic and quantum mechanics. It is shown 1) that the many-body quantum potential associated to the stochastic interpretation of quantum mechanics yields perfectly causal actions at a distance 2) that the corresponding set of distinguishable particle motions corresponds to Bose-Einstein statistics.

Keywords

Poisson Bracket Configuration Space Canonical Variable Probability Weight World Line 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    A. Aspect, P. Grangier and G. Roger, Phys. Rev. Lett., 47, 460, (1981).ADSCrossRefGoogle Scholar
  2. 2.
    A. Aspect, P. Grangier and G. Roger, Phys. Rev. Lett., 49, 91, (1982).ADSCrossRefGoogle Scholar
  3. 3.
    A. Aspect, J. Dalibard and G. Roger, Phys. Rev. Lett., 49, 1804, (1982).MathSciNetADSCrossRefGoogle Scholar
  4. 4.
    D. Bohm, Quantum Theory ( Prentice Hall, Englewood Cliffs, N.J., 1951 ).Google Scholar
  5. 5.
    J.S. Bell, Physics, 195, (1964).Google Scholar
  6. 6.
    E.P. Wigner, Symmetries and Reflections (M.I.T. Press, Cambridge, Mass. 1971 ).Google Scholar
  7. 7.
    O. Costa de Beauregard, Phys. Rev. Lett.,Google Scholar
  8. 8.
    H.P. Stapp, Nuovo Cim., B40, 151, (1977).ADSGoogle Scholar
  9. 9.
    F. Selleri and J.P. Vigier, Nuovo Cim. Lett., 29, 7, (1980); A. Garuccio et al., Nuovo Cim. Lett., 27, 60, (1980).Google Scholar
  10. 10.
    J.P. Vigier, Astr. Nachr., 303, 55, (1982).MathSciNetADSCrossRefGoogle Scholar
  11. 11.
    L. de Broglie, Une interprétation causale et non linéaire de la mécanique quantique, Gauthier-Villars, Paris, (1972).Google Scholar
  12. 12.
    D. Bohm, Phys. Rev., 85, 166, 180, (1952); Phys. Rev., 89, 458, (1953).Google Scholar
  13. 13.
    D. Bohm and J.P. Vigier, Phys. Rev., 96, 208, (1954); Phys. Rev., 109, 1882, (1958).Google Scholar
  14. 14.
    P.A.M. Dirac, Nature, 168, 906, (1951),MathSciNetADSCrossRefGoogle Scholar
  15. 15.
    J.P. Vigier, Nuovo Cim. Lett., 29, 467, (1980); see also N. Cufaro-Petroni and J.P. Vigier, Found. Phys., 12, 253, (1982).Google Scholar
  16. 16.
    N. Cufaro-Petroni and J.P. Vigier, Found. Phys., 13, 253, (1983).MathSciNetADSCrossRefGoogle Scholar
  17. 17.
    P. Guéret, P. Mérat and J.P. Vigier, Lett. Math. Phys., 3, 47, (1979) ; see also Marie et al., Nuovo Cim. Lett., 29, 65, (1980) .Google Scholar
  18. 18.
    J.P. Vigier, Nuovo Cim. Lett., 24, 258, 265, (1979).MathSciNetADSCrossRefGoogle Scholar
  19. 19.
    N. Cufaro-Petroni and J.P. Vigier, in Old and New Questions in Physics, Cosmology, Philosophy, and Theoretical Biology, A. van der Merwe, ed. ( Plenum, New-York, 1983 ).Google Scholar
  20. 20.
    N. Cufaro-Petroni, P. Droz-Vincent and J.P. Vigier, Nuovo Cim. Lett., 31, 415, (1981).Google Scholar
  21. 21.
    N. Cufaro-Petroni and J.P. Vigier, Phys. Lett., 93A, 383, (1983).MathSciNetADSGoogle Scholar
  22. 22.
    F. Falciglia, G. Iaci and V.A. Rapisarda, Nuovo Cim. Lett., 26, 327, (1979); L. Papalardo and V.A. Rapisarda, Nuovo Cim., A65, 269, (1981); A. Garuccio and V.A. Rapisarda, Nuovo Cim., A65, 269, (1981).Google Scholar
  23. 23.
    See references (13) and E. Nelson, Phys. Rev., 150, 1079, (1966); W. Lehr and J. Park, J. Math. Phys., 18 1235,(1977); F. Guerra and P. Ruggiero, Nuovo Cim. Lett., 23, 529, (1978); N. Cufaro-Petroni and J.P. Vigier, Phys. Lett., 73A, 289, (1979), and 81A, 12, (1981); Kh. Namsrai, Found. Phys., 10, 353, 731, (1980).Google Scholar
  24. 24.
    P. Droz-Vincent, Ann. Inst. H. Poincare, 27, 407, (1977); Phys. Rev., D19, 702, (1979).Google Scholar
  25. 25.
    P. Droz-Vincent, Ann. Inst. H. Poincaré, 32, 377, (198 ).Google Scholar
  26. 26.
    P. Droz-Vincent, Nuovo Cim. Lett., 1, 839, (1969); Physica Scripta, 2, 129, (1970).Google Scholar
  27. 27.
    P. Droz-Vincent, Rep. Math. Phys., 8, 79, (1975).MathSciNetADSCrossRefGoogle Scholar
  28. 28.
    P. Droz-Vincent, C.R. Acad. Sc. (Paris), A182, (1979); For N=2, see, e. g., R.P. Feynman, K. Kislinger and R. Ravnel, Phys. Rev., D3, 2706, (1971); Y.S. Kim and M.L. Noz, Phys. Rev., D15, 33 (1977); J.F. Gunion and F. Li, Phys. Rev., D12, 3583, (1975); H.W. Crater, Phys. Rev., D16, 1580, (1977).Google Scholar
  29. 29.
    L. de Broglie, C.R. Acad. Sc. (Paris), 184, 273, (1927); 185, 380, (1927); D. Bohm, Phys. Rev., 85, 166, 180, (1952); D. Bohm and J.P. Vigier, Phys. Rev., 96, 208, (1954).Google Scholar
  30. 30.
    W. Lehr and J. Park, J. Math. Phys., 18, 1235, (1977) ;F.Guerra and P. Ruggiero, Nuovo Cim. Lett., 23, 529, (1978); J.P. Vigier, Nouvo Cim Lett., 24, 265, (1979) ; N. Cufaro-Petroni and J.P. Vigier, Random motions at the velocity of light and relativistic quantum mechanics, Inst. H. Poincaré, preprint (1983). J. Phys. (1983) in press.Google Scholar
  31. 31.
    T. Takabayasi, Prog. Theor. Phys., 43, 1117, (1970); T. Takabayasi, Prog. Theor. Phys., 51, 262, 571, (1974).Google Scholar
  32. 32.
    T. Takabayasi, Prog. Theor. Phys., 44, 1429, (1970).ADSCrossRefGoogle Scholar
  33. 33.
    J.S. Bell, private communication.Google Scholar
  34. 34.
    W. Lehr and J. Park, J. Math. Phys., 18, 1235, (1977).ADSCrossRefGoogle Scholar
  35. 35.
    F. Guerra and P. Ruggiero, Nuovo Cim. Lett.,.23, 529, (1978).Google Scholar
  36. 36.
    J.P. Vigier, Nuovo Cim. Lett., 24, 258, 265, (1979).MathSciNetADSCrossRefGoogle Scholar
  37. 37.
    D. Bohm and J.P. Vigier, Phys. Rev., 96, 208, (1954); 109, 882, (1958).Google Scholar
  38. 38.
    N. Cufaro-Petroni and J.P. Vigier, Nuovo Cim. Lett., 26, 149, (1979).MathSciNetADSCrossRefGoogle Scholar
  39. 39.
    E. Nelson, Phys. Rev., 150, 1079, (1966).ADSCrossRefGoogle Scholar
  40. 40.
    Z. Marie, M. Bozic and D. Davidovic, Randomness and determinism in the kinetic equations of Clausius and Boltzmann. Proceedings of the Boltzmann meeting, Vienna (1981).Google Scholar
  41. 41.
    W.M. de Muynck, Int. J. Th. Phys., 14, 327, (1975).Google Scholar
  42. 42.
    J. Tersoff and D. Bayer, Phys. Rev. Lett., 50, 553, (1983).MathSciNetADSCrossRefGoogle Scholar
  43. 43.
    A. Baracca, D. Bohm, B.J. Hiley and A.E.G. Stuart, Nuovo Cim., 28B, 453, (1975).Google Scholar
  44. 44.
    A. Garuccio, K. Popper and J.P. Vigier, Phys. Lett., 86A, 397, (1981); A. Garuccio, V.A. Rapisarda and J.P. Vigier, Phys. Lett., 90A, 17, (1982); A. Gozzini, in The wave-particle dualism, S. Diner et al., eds. ( Reidel, Dordrecht, 1983 ).Google Scholar
  45. 45.
    J. Andrade e Sylva, F. Selleri and J.P. Vigier, Nuovo Cim. Lett., 36, 503, (1983) ; F. Selleri, Found. Phys., 12, 1087, (1982) ; H. Rauch, A. Wilfing, W. Bauspiess and U. Bonse, Z. Physik, B29, 281, ((1978) ; see also H. Rauch1s report in this book.Google Scholar

Copyright information

© D. Reidel Publishing Company 1985

Authors and Affiliations

  • J. P. Vigier
    • 1
  1. 1.Institut Henri Poincaré Equipe de Recherche Associée au CNRS N°533Paris Cedex 05France

Personalised recommendations