Advertisement

The Role of the Quantum Potential in Determining Particle Trajectories and the Resolution of the Measurement Problem

  • B. J. Hiley
Part of the Fundamental Theories of Physics book series (FTPH, volume 10)

Abstract

The method of calculating particle trajectories, using the quantum-potential model, is reviewed and some pertinent details for the two-slit interference experiment, the Aharonov-Bohm effect, and barrier penetration are presented. The implications of this model are discussed and contrasted with the orthodox interpretation of quantum mechanics and with the classical paradigm. The model is then applied to the act of measurement and it is shown how, if irreversibility is included, no collapse problem arises.

Keywords

Wave Function Wave Packet Barrier Height Incident Particle Schrodinger Equation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Y. Aharonov and D. Bohm, Phys. Rev. 115, 485 (1959).MathSciNetADSzbMATHCrossRefGoogle Scholar
  2. Y. Aharonov and D. Bohm, Phys. Rev. 130, 1625 (1963).MathSciNetADSzbMATHCrossRefGoogle Scholar
  3. A. Aspect, J. Dalibard, and C. Roger, Phys. Rev. Lett. 49, 1804 (1982).MathSciNetADSCrossRefGoogle Scholar
  4. A. Baracca, D. Bohm, B.J. Hiley, and A.E.G. Stuart, Nuovo Cimento 28B, 453 (1975).MathSciNetCrossRefGoogle Scholar
  5. F.J. Belinfante, Phys. Rev. 128, 2382 (1962).CrossRefGoogle Scholar
  6. J.S. Bell and M. Nauenberg, in Preludes in Theoretical Physics,Google Scholar
  7. A. de Shalit et al., eds.(North Holland Amsterdam, 1965), p. 279.Google Scholar
  8. J.S. Bell, CERN Preprint TH 1424 (1971).Google Scholar
  9. D. Bohm, Phys. Rev. 85, 166, 180 (1952).MathSciNetADSCrossRefGoogle Scholar
  10. D. Bohm, Quantum Theory (Prentice-Hall, New Jersey, 1960), Chap. 8.Google Scholar
  11. D. Bohm and B.J. Hiley, Found. Phys. 5, 93 (1975).ADSCrossRefGoogle Scholar
  12. D. Bohm and B.J. Hiley, Found. Phys. 12, 1001 (1982).MathSciNetADSCrossRefGoogle Scholar
  13. D. Bohm and B.J. Hiley, Found. Phys. 14, 255 (1984).MathSciNetADSCrossRefGoogle Scholar
  14. N. Bohr, Atomic Physics and Human Knowledge ( Science Editions, New York, 1961 ).Google Scholar
  15. L. de Broglie, C. R. Acad. Sci. 177, 506, 548, 630 (1923).Google Scholar
  16. L. de Broglie, Une tentative d’intérpretation causale et non linéaire de la mécanique ondulatoire: la théorie de la double solution ( Gauthier-Villars, Paris, 1956 ).Google Scholar
  17. L. de Broglie, La thermodynamique de la particule isolée ( Gauthier-Villars, Paris, 1964 ).Google Scholar
  18. B. De Witt Phys. Rev. 125, 2189 (1962).Google Scholar
  19. C. Dewdney and B.J. Hiley, Found. Phys. 12, 27 (1982).ADSCrossRefGoogle Scholar
  20. W. Ehrenberg and R.E. Siday, Proc. Phys. Soc. (London) B62, 8 (1949).ADSCrossRefGoogle Scholar
  21. A. Einstein, B. Podolsky, and N. Rosen, Phys. Rev. 47, 777 (1935).ADSzbMATHCrossRefGoogle Scholar
  22. H. Everett, ReV. Mod. Phys. 29, 454 (1957).MathSciNetADSCrossRefGoogle Scholar
  23. D. Finkelstein, Phys. Rev. 184, 1261 (1969).MathSciNetADSzbMATHCrossRefGoogle Scholar
  24. D. C. Galehouse, Int. J. Theor. Phys. 20 787 (1981).Google Scholar
  25. B. J. Hiley, Ann. Fond, de Broglie 5, 75 (1890).Google Scholar
  26. J.O. Hirschfelder, A.C. Christoph, and W.E. Palke, J. Chem. Phys. 61, 5435 (1974).ADSCrossRefGoogle Scholar
  27. J.O. Hirschfelder and K.T. Tang, J. Chem. Phys. 64 760 (1976); 65, 470 (1976).Google Scholar
  28. E. Madelung, Z. Phys. 40, 332 (1926).Google Scholar
  29. C. Philippidis, C. Dewdney, and B.J. Hiley, Nuovo Cimento 52B, 15 (1979).MathSciNetCrossRefGoogle Scholar
  30. C. Philippidis, D. Bohm, and R.D. Kaye, Nuovo Cimento 71B, 75 (1982).MathSciNetCrossRefGoogle Scholar
  31. I. Prigogine, From Being to Becoming ( Freeman, San Fransisco, 1980 ).Google Scholar
  32. R.D. Prosser, Int. J. Theor. Phys. 15, 169, 181 (1976).Google Scholar
  33. R. Thom, Modèles mathématiques de la morphogenèse ( Union Généraled’editions, Paris, 1974 ).Google Scholar
  34. A. Tonomura, T. Matsuda, R. Suzuki, A. Fukuhara, N. Osakabe, H. Umezaki, J. Endo, K. Shinagawa, Y. Sugita, and H. Fujiwara, Phys. Rev. Lett. 48, 1443 (1932).ADSCrossRefGoogle Scholar
  35. E.P. Wigner, Am. J. Phys. 31, 6 (1963).MathSciNetADSzbMATHCrossRefGoogle Scholar
  36. E.P. Wigner, The Scientist Speculates, I.J. Good ed. ( Putnam, New York, 1965 ).Google Scholar
  37. J.-P. Vigier, Astron. Nachr. 303 55 (1982).MathSciNetADSCrossRefGoogle Scholar

Copyright information

© D. Reidel Publishing Company 1985

Authors and Affiliations

  • B. J. Hiley
    • 1
  1. 1.Physics Department Birkbeck CollegeUniversity of LondonLondonEngland

Personalised recommendations