Skip to main content

Part of the book series: Developments in Biogeochemistry ((DBGC,volume 3))

Abstract

In addressing the question of recent advances in quantitative soil biology, it is most important to ask, recent? Since when? We have chosen to define this question even further, by dividing the question into three parts, i.e., 1) are there recent advances in the measurement of microbial populations and biomass, 2) are there recent advances or modifications of old established methods in the measurement of population density, biomass and contributions of the soil fauna to energy and nutrient fluxes, and 3) are there recent advances in techniques to determine the influence of the soil biota on soil decomposition and mineralization pathways. In each of these questions, the term “recent” will take on a different meaning. In the question concerning soil fauna, advances shall be designated as recent since Petersen and Luxton’s (1982) excellent critique of procedures used during the International Biological Program to determine density and biomass for soil animals of the detritus food web. Swift, Heal and Anderson (1979) emphasized unique advances in methodology following Phillipson’s (1971) IBP Handbook of Methods.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abrahamsen, G. 1972. Ecological study of enchytraeidae (Oligochaeta) in Norwegian coniferous forest soils. Pedobio. 12: 26 – 82.

    Google Scholar 

  2. Anderson, J. M. 1973. Carbon dioxide evolution from two temperate, deciduous woodland soils. J. Appl. Ecology 10: 361 – 378.

    Google Scholar 

  3. Anderson, J. M., and I. N. Healey. 1970. Improvements in the gelatin-embedding technique for woodland soil and litter samples. Pedobio. 10: 108 – 120.

    Google Scholar 

  4. Anderson, J. M., and P. Ineson. 1982. A soil microcosm system and its application to measurements of respiration and nutrient leaching. Soil Biol. Biochem. 14: 415 – 416.

    Google Scholar 

  5. Anderson, J. P. E., and K. H. Domsch. 1978. Mineral-ization of bacteria and fungi in chloroform-fumigated soils. Soil Biol. Biochem. 10: 207 – 213.

    CAS  Google Scholar 

  6. Anderson, R. V., D. C. Coleman, C. V. Cole, E. T. Elliott, and J. F. McClellan. 1979. The use of soil microcosms in evaluating bacteriophagic nematode responses to other organisms and effects on nutrient cyling. Int. J. Environ. Stud. 13: 175 – 182.

    Google Scholar 

  7. Andrassy, I. 1956. Die Rauminhalts and gewichtsbestimmung der Fadenwurmer (Nematoden). Acta. Zool. Acad. Sci. Hung. 2: 1 – 15.

    Google Scholar 

  8. Andrassy, I. 1962. The problem of number and size of sampling unit in quantitative studies of soil nematodes. Pages 65–67 inP. W. Murphy, editor. Progress in soil zoology. Butterworth’s, London, England.

    Google Scholar 

  9. Anscombe, F. J. 1950. Soil sampling for potato root eelworm cysts. Ann. Appl. Biol. 37: 286 – 295.

    Google Scholar 

  10. Aucamp, J. L., and P. A. J. Ryke. 1964. A preliminary report on a grease film extraction method for soil microarthropods. Pedobio. 4: 77 – 79.

    Google Scholar 

  11. Axelsson, B., D. Gardetors, U. Lohm, and O. Tenow. 1971. Reliability of estimating standing crop of earthworms by handsorting. Pedobio. 11: 338 – 340.

    Google Scholar 

  12. Ayoub, S. M. 1980. Plant nematology. An agriculture training aid. Department of Food and Agriculture, Sacramento, California, USA.

    Google Scholar 

  13. Barker, K. R . (Chairman). 1978. Determining nematode population responses to control agents. Pages 114–125 inE. I. Zehr, editor. Methods for evaluating plant fungicides, nematicides and bactericides. Am. Phytopathol. Soc., St. Paul, Minnesota, USA.

    Google Scholar 

  14. Barker, K. R., and C. L. Campbell. 1981. Sampling nematode populations. Pages 451–474 inB. M. Zuckerman, and R. A. Rhode, editors. Plant parasitic nematodes. Vol. III. John Wiley and Sons, New York, New York, USA.

    Google Scholar 

  15. Barker, K. R., C. J. Nusbaum, and L. A. Nelson. 1969. Seasonal population dynamics of selected plant-parasitic nematodes as measured by three extraction procedures. J. Nematol. 1: 232 – 239.

    PubMed  CAS  Google Scholar 

  16. Barker, K. R., C. C. Carter, and J. N. Sasser, editors. 1985. An advanced treatise on Meloidogyne: Volume II, Methodology. University Graphics, North Carolina, USA (in press).

    Google Scholar 

  17. Baskerville, G. L., and P. Emin. 1969. Rapid estimation of heat accumulation from maximum and minimum temperatures. Ecology 50: 514 – 517.

    Google Scholar 

  18. Behan, V. M., S. B. Hill, and D. K. E. McE Kevan. 1978. Effects of nitrogen fertilizers, as urea, on Acarina and other arthropods in Quebec black spruce humus. Pedobio. 18: 249 – 263.

    Google Scholar 

  19. Berthet, P . 1963. Mesure de la consommation d’ oxygene des Oribatides (Acariens) de la litiere des forets. Pages 18–31 inJ. Doeksen, and J. Van der Drift, editors. Soil organisms. North Holland Publishing Company, Amsterdam, Holland.

    Google Scholar 

  20. Berthet, P . 1971. Mites. Pages 186–208 inJ. Phillipson, editor. Methods of study in quantitative soil ecology: population, production and energy flow. IBP Handbook No. 18. Blackwell Scientific Publications, Oxford, England.

    Google Scholar 

  21. Best, G. R., J. V. Nabholtz, J. Ojasti, and D. A. Crossley. 1978. Response of microarthropod populations to napthalene in three contrasting habitats. Pedobio. 18: 189 – 201.

    CAS  Google Scholar 

  22. Beute, M. K. 1974. A quantitative technique for the extraction of soil-inhabiting mites (Acarina) and spring tails (Collembola) associated with pod rot of peanut. Phytopathol. 64: 571 – 572.

    Google Scholar 

  23. Binkley, D . 1982. Case studies of red alder and sitka alder in Douglas Fir plantations: nitrogen fixation and ecosystem production. Thesis. Oregon State University, Corvallis, Oregon, USA.

    Google Scholar 

  24. Bocock, K. L., and O. J. W. Gilbert. 1957. The disappearance of leaf litter under different woodland conditions. Plant Soil 9: 179 – 185.

    Google Scholar 

  25. Bohlool, B. B., and E. L. Schmidt. 1968. Nonspecific staining: its control in immunofluorescence examination of soil. Science 162: 1012 – 1014.

    PubMed  CAS  Google Scholar 

  26. Boreham, P. F. L. 1979. Recent developments in serological methods for predator-prey studies. Misc. Publ. Entomol. Soc. Amer. 11: 17 – 23.

    Google Scholar 

  27. Bouche, M. B. 1969. Comparison critique des methodes d’evaluation des populations de Lumbricides. Pedobio. 9: 26 – 34.

    Google Scholar 

  28. Bouche, M. B . 1975. Fonction des lombriciens. III. Premieres estimations quantitative des stations francaise du P.B.I. coll. biologie du sol Montpellier 27. Mai-2. Juine 1973. Rev. Ecol. Biol. Sol. 12: 25 – 44.

    Google Scholar 

  29. Bouche, M. B., and R. H. Gardner. 1983. Fonctions des lombricien (earthworm functions). VIII. Population estimation techniques. Rev. Ecol. Biol. Sol. 21: 37 – 63.

    Google Scholar 

  30. Brown, A. H. F., and A. F. Harrison. 1983. The effect of tree mixtures on the earthworm populations and N and P status of spruce stands. Pages 101–107 inPh. Lebrun, H. M. Andre, A. De Medts, C. Gregoire-Wibo, and G. Wauthy, editors. New trends in soil biology. Dieu-Brichart, Louvain-la-Neuve, Belgium.

    Google Scholar 

  31. Burges, A., and F. Raw, editors. 1967. Soil biology. Academic Press, London, England.

    Google Scholar 

  32. Byrd, D. W., Jr., K. R. Barker, H. Ferris, C. J. Nusbaum, W. E. Griffin, R. H. Small, and C. A. Stone. 1976. Two semi-automatic elutriators for extracting nematodes and certain fungi from soil. J. Nematol. 8: 206 – 212.

    PubMed  CAS  Google Scholar 

  33. Chao, Y. S. and A. A. Holland. 1970. Direct and indirect fluorescent antibody staining of Ophiobolus gramin Sacc. in culture and in the rhizosphere of cereal plants. Antonie van Leeuwenhoek 36: 549 – 554.

    Google Scholar 

  34. Clarholm, M. 1981. Protozoan grazing of bacteria in soil — impact and importance. Microb. Ecol. 1: 343 – 350.

    Google Scholar 

  35. Clarholm, M., and T. Rosswall. 1981. Biomass and turnover of bacteria in a forest soil and tundra pest. Soil Biol. Biochem. 12: 49 – 51.

    Google Scholar 

  36. Clarholm, M., Coleman, D. C., and A. MacFadyen. 1966. The recolonization of gamma-irridiated soil, by small arthropods. Oikos 17: 62 – 70.

    Google Scholar 

  37. Clarholm, M., C. P. P. Reid, and C. V. Cole. 1983. Biological strategies of nutrient cycling in soil systems. Pages 1–55 inA. MacFadyen and E. D. Ford, editors. Advances in Ecological Research, Vol. 13. Academic Press, New York, New York USA.

    Google Scholar 

  38. Clarholm, M., Ingham, R. E., J. F. McClellan, and J. A. Trofymow. 1984. Soil nutrient transformations in the rhizosphere via animal-microbial interactions. Pages 35–58 inJ. M. Anderson, A. D. M. Rayner and D. W. H. Walton, editors. Invertebrate-microbial interactions. Cambridge University Press, New York, New York, USA.

    Google Scholar 

  39. Cromack, K. Jr., P. Sollins, W. C. Graustein, K. Speidel, A. W. Todd, G. Spycher, C. Y. Li, and R. L. Todd. 1979. Calcium oxalate accumulation and soil weathering in mats of the ectomycorrhizal fungus Hysterangium crassum(Tul. and Tul.) Fischer. Soil. Biol. Biochem. 11: 463 – 468.

    CAS  Google Scholar 

  40. Crossley, D. A., and M. Witkamp. 1964. Some methods for assessing the activity of soil animals in the breakdown of leaves. C.R.I. er Congress Internat. D’Acarologie 137 – 146.

    Google Scholar 

  41. Cutler, D. W. 1920. A method for estimating the number of active protozoa in the soil. J. Agric. Sci. 10: 135 – 143.

    CAS  Google Scholar 

  42. Edwards, C. A., and K. Fletcher. 1971. A comparison of extraction methods for terrestrial arthropods. Pages 150–185 inJ. Phillipson, editor. Methods of study in quantitative soil ecology: population, production and energy flow. Blackwell Scientific Publications, Oxford, England.

    Google Scholar 

  43. Edwards, C. A., and J. R. Lofty. 1972. Biology of earthworms. Chapman and Hall, Ltd., London, England.

    Google Scholar 

  44. Elliott, J. M . 1971. Some methods for the statistical analysis of benthic invertebrates. Freshwater Biological Assoc. Scientific Publication No. 15, Ambleside, England.

    Google Scholar 

  45. Englemann, M. D. 1961. The role of soil arthropods in the energetics of an old field community. Ecol. Monog. 31: 221 – 238.

    Google Scholar 

  46. Fager, E. W. 1968. The community of invertebrates in decaying oak wood. J. Anim. Ecol. 37: 121 – 142.

    Google Scholar 

  47. Fairbanks, B. C., L. E. Woods, R. J. Bryant, E. T. Elliot, C. V. Cole, and D. C. Coleman. 1984. Limitations of ATP estimates of microbial biomass. Soil Biol. Biochem. 16: 549 – 558.

    CAS  Google Scholar 

  48. Fichter, B. L., and W. P. Stephen. 1981. Time related decay in prey antigens ingested by the predator Podisus maculiventris(Hemiptera, Pentatomidae) as detected by ELISA. Oecologia 51: 404 – 407.

    Google Scholar 

  49. Fogel, R., and G. Hunt. 1979. Fungal and arboreal biomass in a western Oregon Douglas-fir ecosystem: Distribution patterns and turnover. Can. J. For. Res. 9: 245 – 256.

    Google Scholar 

  50. Foster, R. C. 1981. Polysaccharides in soil fabrics. Science 214: 665 – 667.

    PubMed  CAS  Google Scholar 

  51. Frankland, J. C., A. D. Bailey, T. R. G. Gray, and A. A. Holland. 1981. Development of an immunological technique for estimating mycelial biomass of Mycena galopusin leaf litter. Soil Biol. Biochem. 13:87–92.

    Google Scholar 

  52. Freckman, D. W. 1982a. Parameters of the nematode contribution to ecosystems. Pages 81–97 inD. W. Freckman, editor. Nematodes in soil ecosystems. Univ. Texas Press, Austin, Texas, USA.

    Google Scholar 

  53. Freckman, D. W ., editor. 1982b. Nematodes in soil ecosystems. Univ. Texas Press, Austin, Texas, USA.

    Google Scholar 

  54. Freckman, D. W., and J. G. Baldwin. 1985. Soil nematoda in D. L. Dindal, editor. Soil biology. Wiley-Interscience. New York, New York, USA (in press).

    Google Scholar 

  55. Freckman, D. W., S. D. Van Gundy, and S. F. MacLean, Jr. 1977. Nematode community structure in Alaskan Soils. Nematol. 9: 268.

    Google Scholar 

  56. Geisy, J. P., editor. 1980. Microcosms in ecological research: selected papers from a symposium held in Augustus, Georgia. U.S. Dept. Energy, Washington, D.C.

    Google Scholar 

  57. Goodell, P. B. 1982. Soil sampling and processing for detection and quantification of nematode populations. Pages 179–198 inD. W. Freckman, editor. Nematodes in soil ecosystems. Univ. Texas Press, Austin, Texas, USA.

    Google Scholar 

  58. Goodell, P. B., and H. Ferris. 1980. Plant parasitic nematode distribution in an alfalfa field. J. Nematol. 12: 136 – 141.

    PubMed  CAS  Google Scholar 

  59. Graustein, W. C., K. Cromack, Jr.,and P. Sollins. 1978. Calcium oxalate: occurrence of soils and effect on nutrient and geochemical cycles. Science 198: 1252 – 1254.

    Google Scholar 

  60. Gray, T. R. G. 1967. Stereoscan electron microscopy of soil micro-organisms. Science 155: 1668 – 1670.

    PubMed  CAS  Google Scholar 

  61. Harding, D. J. L . 1967. Faunal participation in the breakdown of cellophane inserts in the forest floor. Pages 10–20 inO. Graff, and J. E. Satchell, editors. Progress in soil biology. Vieweg and Sohn, Braunschweig, Germany.

    Google Scholar 

  62. Harris, W. F, D. Santantonio, and D. McGinty. 1980. Dynamic belowground ecosystems. Pages 119–129 inR. H. Waring, editor. Forests: fresh perspectives from ecological analysis. Proc. 40th Biol. Colloq., Oregon State University Press, Corvallis, Oregon USA.

    Google Scholar 

  63. Hartenstein, R ., editor. 1978. Utilization of soil organisms in sludge management. Soil microcommunity conference proc., Syracuse, New York, USA.

    Google Scholar 

  64. Healey, I. N . 1967. The population metabolism of Onychiurus procampatusGisin (Collembola). Pages 127–137 inO. Graff, and J. E. Satchell, editors. Progress in soil biology. Vieweg and Sohn, Braunschweig, Germany.

    Google Scholar 

  65. Healey, I. N . 1971. Apterygotes, Pauropods and Symphylans. Pages 209–232 inJ. Phillipson, editor. Methods of study in quantitative soil ecology. IBP Handbook No. 18. Blackwell Scientific Publications, Oxford, England.

    Google Scholar 

  66. Heath, G. W., C. A. Edwards, and M. K. Arnold. 1964. Some methods for assessing the activity of soil animals in the breakdown of leaves. Pedobio. 4: 80 – 87.

    Google Scholar 

  67. Howard, P. J. A. 1972. Problems in the estimation of biological activity in soil. Oikos 23: 235 – 240.

    CAS  Google Scholar 

  68. Huhta, V. 1972. Efficiency of different dry funnel techniques in extracting arthropoda from raw humus forest soil. Ann. Zool. Fenn. 9: 42 – 48.

    Google Scholar 

  69. Huhta, V., and A. Koskennemi. 1975. Numbers, biomass and community respiration of soil invertebrates in spruce forests in two latitudes in Finland. Ann. Zool. Fenn. 12: 164 – 182.

    Google Scholar 

  70. Huhta, V., E. Ikonen, and P. Vilkamaa. 1979. Succession of invertebrate populations in artificial soil made of sewage sludge and crushed bark. Ann. Zool. Fenn. 16: 223 – 270.

    Google Scholar 

  71. Huhta, V., A. Koskenniemi, R. Segersven, and P. Vilkamaa. 1983. Role of pH in the effect of fertilization on nematoda, oligochaeta and microarthropods. Pages 61–73 inPh. Lebrun, H. M. Andre, A. de Medts, C. Gregoire-Wibo, and G. Wauthy, editors. New trends in soil biology. Dieu-Brichart, Louvain-la-Neuve, Belgium.

    Google Scholar 

  72. Hurlbert, S. H. 1984. Pseudoreplication and the design of ecological field experiments. Ecol. Monog. 54: 187 – 211.

    Google Scholar 

  73. Ineson, P., M. A. Leonard, and J. M. Anderson. 1982. Effect of collembolan grazing upon nitrogen and cation leaching from decomposing leaf litter. Soil Biol. Biochem. 14: 601 – 605.

    Google Scholar 

  74. Ingham, E. R., and D. A. Klein. 1982. Relationship between fluorescein diacetate-stained hyphae and oxygen utilization, glucose utilization, and biomass of submerged fungal batch cultures. Appl. Env. Microb. 44: 363 – 370.

    CAS  Google Scholar 

  75. Ingham, E. R. 1984a. Soil fungi: measurement of hyphal length. Soil Biol. Biochem. 16: 279 – 280.

    Google Scholar 

  76. Ingham, E. R. 1984b. Soil fungi: relationships between hyphal activity and staining with fluorescein diacetate. Soil Biol. Biochem. 16: 273 – 278.

    CAS  Google Scholar 

  77. Jenkinson, D. S., and D. S. Poulson. 1976. The effects of biocidal treatments on metabolism in soil - V. A method for measuring soil biomass. Soil Biol. Biochem. 8: 209 – 213.

    CAS  Google Scholar 

  78. Jones, P. C. T., and J. E. Mollison. 1948. A technique for the quantitative estimation of soil microorganisms. J. Gen. Microbiol. 2: 54 – 69.

    CAS  Google Scholar 

  79. Kubiena, W . 1938. Micropedology. Iowa State University Press, Ames, Iowa USA.

    Google Scholar 

  80. Kurcheva, G. F. 1960. Role of invertebrates in the decomposition of oak litter. Soviet Soil Sci. (AIBS translation of Pochvovedeniye). 4: 360 – 365.

    Google Scholar 

  81. Lasebikan, B. A. 1974. Preliminary communication on microarthropods from a tropical rain forest in Nigeria. Pedobio. 14: 402 – 411.

    Google Scholar 

  82. Latter, P. M., and G. Howson. 1977. The use of cotton strips to indicate cellulose decomposition in the field. Pedobio. 17: 147 – 155.

    Google Scholar 

  83. Lebrun, Ph. 1971. Ecologie et biocenotique de quelques Peuplements de ’arthropodes edaphiques. Inst. Royal Sci., Naturelles de Belgique. Memo. 165: 1 – 203.

    Google Scholar 

  84. Lindemann, R. L. 1942. The trophic–dynamic aspect of ecology. Ecology 23: 399 – 418.

    Google Scholar 

  85. Linderstrom-Lang, K. 1943. On the theory of the cartesian diver respirometer. C. R. Trans. Carlsberg, Ser. Chim. 24: 333 – 398.

    Google Scholar 

  86. Lousier, J. D., and D. Parkinson. 1984. Annual population dynamics and production ecology of Testacea (Protozoa, Rhizopoda) in an aspen woodland soil. Soil Biol. Biochem. 16: 103 – 114.

    Google Scholar 

  87. Lundkvist, H. 1978. A technique for determining individual fresh weights of live small animals with special reference to Enchytraeidae. Oecologia 35: 365 – 367.

    Google Scholar 

  88. Lundkvist, H. 1982. Population dynamics of Coanettia sphagnetorum(Enchytraeidae) in a Scots pine forest soil in Central Sweden. Pedobio. 23: 21 – 41.

    Google Scholar 

  89. Lussenhop, J. 1981. Microbial and microarthropod detrital processing in a prairie soil. Ecology 62: 964 – 972.

    Google Scholar 

  90. Luxton, M. 1975. Studies on the Oribatid mites of a Danish Beechwood soil. II. Biomass calorimetry, and respirometry. Pedobio. 15: 161 – 200.

    Google Scholar 

  91. MacFadyen, A. 1952. The small arthropods of a Molina fen at Cothill. J. Anim. Ecol. 21: 87 – 117.

    Google Scholar 

  92. MacFadyen, A. 1961. Improved funnel-type extractors for soil arthropods. J. Anim. Ecol. 30: 171 – 184.

    Google Scholar 

  93. MacFadyen, A . 1962. Soil arthropod sampling. Pages 1–34 inJ. B. Cragg, editor. Adv. Ecol. Res., Academic Press, London, England.

    Google Scholar 

  94. MacFadyen, A . 1963. Animal Ecology — Aims and Methods. Sir Isaac Pitman & Sons Ltd., London, England.

    Google Scholar 

  95. MacFadyen, A. 1970. Simple methods of measuring and maintaining the proportion of carbon dioxide in air, for use in ecological studies of soil respiration. Soil Biol. Biochem. 2: 9 – 18.

    CAS  Google Scholar 

  96. MacLean, S. F., Jr., G. K. Douce, E. A. Morgan, and M. A. Skeel. 1977. Community organization in the soil invertebrates of Alaska arctic tundra. Pages 90–101 inU. Lohm and T. Persson, editors. Soil organisms as components of ecosystems. Proceedings of the VI International colloquium on soil zoology. Ecol. Bull. (Stockholm) 25: 90 – 101.

    Google Scholar 

  97. Merny, G., and J. DeJardin. 1970. Les nematodes phytoparasites des rizieres inondee de Cote d’Ivoire. II. Essai d’ estimation de l’importance des populations. Cah. ORSTOM, Ser. Biol. 11: 45 – 67.

    Google Scholar 

  98. Minagawa, N. 1979. Efficiences of two methods for extracting nematodes from soil. Appl. Entomol. Zool. 4: 469 – 477.

    Google Scholar 

  99. Minderman, G., and J. C. Vulto. 1973a. Comparison of techniques for the measurement of carbon dioxide evolution from soil. Pedobio. 13: 73 – 80.

    Google Scholar 

  100. Minderman, G. 1973b. Carbon dioxide production by tree roots and microbes. Pedobio. 13: 337 – 343.

    Google Scholar 

  101. Mitchell, M. J. 1979. Energetics of Oribatid mites (Acari: Cryptostigmata) in an aspen woodland soil. Pedobio. 19: 89 – 98.

    Google Scholar 

  102. Mitchell, M., and D. Parkinson. 1976. Fungal feeding of oribatid mites (Acari: Cryptostigmata) in an aspen woodland soil. Ecology 57: 302 – 312.

    Google Scholar 

  103. Murphy, P. W., editor. 1962. Progress in soil zoology. Butterworths, London, England.

    Google Scholar 

  104. O’Connor, F. B. 1957. An ecological study of the enchytraeid worm population of a coniferous forest soil. Oikos 8: 271 – 281.

    Google Scholar 

  105. O’Connor, F. B. 1962. The extraction of the Enchytraeidae from soil. Pages 279–285 inP. W. Murphy, editor. Progress in soil zoology. Butterworths, London, England.

    Google Scholar 

  106. O’Connor, F. B . 1963. Oxygen consumption and population metabolism of some populations of Enchytraeidae from North Wales. Pages 32–48 inJ. Doeksen, and J. Van der Drift, editors. Soil organisms. North Holland Publishing Company, Amsterdam, Holland.

    Google Scholar 

  107. O’Connor, F. B . 1971. The enchytraeids. Pages 83–106 inJ. Phillipson, editor. Methods of study in quantitative soil ecology: population, production and energy flow. IBP Handbook No. 18. Blackwell Scientific Publications, Oxford, England.

    Google Scholar 

  108. Odum, E. P . 1971. Fundamentals of ecology. W. B. Saunders Co., New York, New York, USA.

    Google Scholar 

  109. Olson, F. W. 1950. Quantitative estimates of filamentous algae. Trans. Amer. Micros. Soc. 69: 272 – 279.

    Google Scholar 

  110. Oostenbrink, M . 1971. Comparison of techniques for population estimation of soil and plant nematodes. Pages 72–82 inJ. Phillipson, editor. Methods of study in quantitative soil ecology: population, production and energy flow. IBP Handbook No. 18. Blackwell Scientific Publications, Oxford, England.

    Google Scholar 

  111. Page, A. L., R. H. Miller, and D. R. Keeney. 1982. Methods of soil analysis. Part II: Chemical and microbiological properties. American Society of Agronomy, Madison, Wisconsin, USA.

    Google Scholar 

  112. Pande, Y. D., and P. Berthet. 1973. Comparison of the Tullgren funnel and soil section methods for surveying oribatid populations. Oikos 24: 273 – 277.

    Google Scholar 

  113. Paris, O. H., and F. A. Piteka. 1962. Population characteristics of the terrestrial isopod Armadillidium vulgarein a California grassland. Ecology 43: 229 – 248.

    Google Scholar 

  114. Parker, L. W., D. W. Freckman, Y. Steinberger, L. Driggers, and W. G. Whitford. 1984. Effects of simulated rainfall and litter quantities on desert soil biota: soil respiration, microflora and protozoa. Pedobiol. 27:185–195.

    Google Scholar 

  115. Parkinson, D., T. R. G. Gray, J. Holding, and H. M. Nagel-de-Boois. 1971. Heterotrophic microflora. Pages 34–50 inJ. Phillipson, editor. Methods of study in quantitative soil ecology: population, production and energy flow. IBP Handbook No. 18. Blackwell Scientific Publications, Oxford, England.

    Google Scholar 

  116. Paul, E. A., and R. P. Voroney. 1984. Field interpretation of microbial biomass activity measurements. Pages 509–514 inM. J. Klug and C. A. Reddy, editors. Current perspectives in microbial ecology. Amer. Soc. Microbiol., Washington, D.C., USA.

    Google Scholar 

  117. Peterson, H. 1978. Some properties of two high gradient extractors for soil microarthropods and an attempt to evaluate their extraction efficiency. Nat. Jutl. 20: 95 – 121.

    Google Scholar 

  118. Peterson, H., and M. Luxton. 1982. A comparative analysis of soil fauna populations and their role in decomposition processes. Oikos 39: 287 – 376.

    Google Scholar 

  119. Petrusewicz, K., and A. MacFadyen. 1970. Productivity of terrestrial animals, principles and methods. IBP Handbook No. 13. F. A. Davis Company, Philadelphia, Pennsylvania, USA.

    Google Scholar 

  120. Phillipson, J . 1971. Methods of study in quantitative soil ecology: population, production and energy flow. IBP Handbook No. 18. Blackwell Scientific Publications, Oxford, England.

    Google Scholar 

  121. Piearce, T. G., and B. Piearce. 1979. Responses of Lumbricidae to saline inundation. J. Appl. Ecol. 16: 461 – 473.

    Google Scholar 

  122. Proctor, J. R., and C. F. Marks. 1975. The determination of normalizing transformations for nematode count data from soil samples and of efficient sampling schemes. J. Nematol. 20: 395 – 406.

    Google Scholar 

  123. Richards, B. N . 1974. Introduction to the soil ecosystem. Longman Company, New York, New York, USA.

    Google Scholar 

  124. Robinson, A. F. 1984. Comparison of five methods for measuring nematode volume. J. Nematol. 16: 343 – 347.

    PubMed  CAS  Google Scholar 

  125. Rush, C. M., D. R. Upchurch, and T. J. Gerik. 1984. In situ observations of Phymatotrichum omnivorumwith a borescope mini-rhizotron system. Phytopathol. 74: 104 – 105.

    Google Scholar 

  126. Santos, P. F., J. Phillips, and W. G. Whitford. 1981. The role of mites and nematodes in early stages of buried litter decomposition in a desert soil. Ecology 62: 667 – 669.

    Google Scholar 

  127. Satchell, J. E. 1969. Methods of sampling earthworm populations. Pedobio 9: 20 – 25.

    Google Scholar 

  128. Satchell, J. E . 1971. Measuring population and energy flow in earthworms. Pages 261–267 inJ. Phillipson, editor. Methods of studying soil ecology. UNESCO, Paris, France.

    Google Scholar 

  129. Satchell, J. E . 1971. Measuring population and energy flow in earthworms. Pages 261–267 inJ. Phillipson, editor. Methods of studying soil ecology. UNESCO, Paris, France.

    Google Scholar 

  130. Schlesinger, W. H. 1977. Carbon balance in terrestrial ecosystems. Ann. Rev. Ecol. Syst. 8: 51 – 81.

    CAS  Google Scholar 

  131. Seastedt, T. R. 1984. The role of microarthropods in decomposition and mineralization processes. Ann. Rev. Entomol. 29: 25 – 46.

    Google Scholar 

  132. Seastedt, T. R., and D. A. Crossley, Jr. 1978. Further investigations of microarthropod populations using the Merchant-Crossley high gradient-extractor. J. Georgia Ent. Soc. 13: 344 – 388.

    Google Scholar 

  133. Seastedt, T. R. 1980. Effects of microarthropods on the seasonal dynamics of nutrients in forest litter. Soil Biol. Biochem. 12: 337 – 342.

    CAS  Google Scholar 

  134. Seastedt, T. R. 1983. Nutrients in forest litter treated with napthalene and simulated throughfall: A field microcosm study. Soil Biol. Biochem. 15: 159 – 165.

    CAS  Google Scholar 

  135. Seastedt, T. R., A. Kothari, and D. A. Crossely, Jr. 1980. A simplified gelatin embedding technique for sectioning litter and soil samples. Pedobio. 29: 55 – 59.

    Google Scholar 

  136. Sibbesen, E. 1977. A simple ion-exchange resin procedure for extracting plant-available elements from soil. Plant Soil 46: 665 – 669.

    CAS  Google Scholar 

  137. Singh, J., and K. S. Pillai. 1976. The use of a flotation method in the collection of microarthropods from arable soil in India. Rev. Ecol. Biol. Sol. 13: 321 – 335.

    Google Scholar 

  138. Smith, V. R. 1979. Evaluation of a resin-bag procedure for determining plant-available P in organic volcanic soils. Plant Soil 53: 245 – 249.

    CAS  Google Scholar 

  139. Sohlenius, B. 1979. A carbon budget for nematodes, rotifers and tardigrades in a Swedish coniferous forest soil. Holarc. Ecol. 2: 30 – 40.

    CAS  Google Scholar 

  140. Sohlenius, B. 1980. Abundance, biomass and contribution to energy flow by soil nematodes in terrestrial ecosystems. Oikos 34: 186 – 194.

    Google Scholar 

  141. Somme, L., and W. Block. 1982. Cold hardiness of Collembola at Signy Island, Maritime Antarctic. Oikos 38: 168 – 176.

    Google Scholar 

  142. Southwood, T. R. E . 1975. Ecological Methods. Butler and Tanner, Ltd., London, England.

    Google Scholar 

  143. Springett, J. A. 1981. A new method for extracting earthworms from soil cores with comparison of four commonly used methods for estimating earthworm populations. Pedobio. 21: 217 – 222.

    Google Scholar 

  144. St. John, T. V. 1980. Influence of litter bags on growth of fungal structures. Oecologia 46: 130 – 132.

    Google Scholar 

  145. Standen, V. 1973. The production and respiration of an enchytraeid population in blanket bog. J. Anim. Ecol. 42: 219 – 245.

    Google Scholar 

  146. Standen, V. 1982. Associations of Enchytraeidae in experimentally fertilized grasslands. J. Anim. Ecol. 51: 501 – 523.

    Google Scholar 

  147. Stevenson, B. G., and D. L. Dindal. 1981. A litter box method for the study of litter arthropods. J. Georgia Ent. Soc. 16: 151 – 156.

    Google Scholar 

  148. Stevenson, B. G. 1982a. Effect of leaf shape on forest litter collembola: community organization and microhabitat selection of two species. J. Georgia Ent. Soc. 17: 369 – 376.

    Google Scholar 

  149. Stevenson, B. G. 1982b. Effect of leaf shape on forest spiders: community organization and microhabitat selection of immature Enoplognatha ovata(Clerck) (Theridiidae). J. Arach. 10: 165 – 178.

    Google Scholar 

  150. Swift, M. J., O. W. Heal, and J. M. Anderson. 1979. Decomposition in terrestrial ecosystems. Blackwell Scientific Publications. Oxford, England.

    Google Scholar 

  151. Takeda, H. 1979. On the extraction process and efficiency of MacFadyen’s high-gradient extractor. Pedobio. 19: 106 – 112.

    Google Scholar 

  152. Tamura, H. 1976. Biases in extracting collembola through Tullgren funnels. Rev. Ecol. Biol. Sol 13: 21 – 34.

    Google Scholar 

  153. Terhivuo, J. 1980. Relative efficiency of handsorting, formalin application and combination of both methods in extracting Lumbricidae from Finnish soils. Pedobio. 23: 175 – 188.

    Google Scholar 

  154. Thomas, J. O. M. 1979. An energy budget for a woodland population of orbatid mites. Pedobio. 19: 346 – 378.

    Google Scholar 

  155. Van der Drift, J. 1951. Analysis of the animal community of a beech forest floor. Tijdschr. Ent. 94: 1 – 168.

    Google Scholar 

  156. Van Straalen, N. M., and P. C. Rijninks. 1982. The efficiency of Tullgren apparatus with respect to interpreting seasonal changes in age structure of soil arthropod populations. Pedobio. 24: 197 – 209.

    Google Scholar 

  157. Viglierchio, D., and R. V. Schmitt. 1983. On the methodology of nematode extraction from field samples: comparison of methods for soil extraction. J. Nematol. 15: 450 – 454.

    PubMed  CAS  Google Scholar 

  158. Waksman, S. A . 1932. Principles of soil microbiology. Williams and Wilkins Publishing Company, Baltimore, Maryland, USA.

    Google Scholar 

  159. Wallwork, J. A . 1970. Ecology of soil animals. McGraw-Hill Publishers, London, England.

    Google Scholar 

  160. Wallwork, J. A. 1976. The distribution and diversity of soil fauna. Academic Press, London, England.

    Google Scholar 

  161. Warwick, R. M., and R. Price. 1979. Ecological and metabolic studies on free living nematodes from an estuarine mud-flat. Estuar. Coast. Mar. Sci. 9: 257 – 271.

    Google Scholar 

  162. Whitford, W. G., D. W. Freckman, N. Z. Elkins, L. W. Parker, R. Parmalee, J. Phillips, and S. Tucker. 1981. Diurnal migration and responses to simulated rainfall in desert soil microarthropods and nematodes. Soil Biol. Biochem. 13: 417 – 425.

    Google Scholar 

  163. Willard, J. R. 1972. Soil invertebrates. I. Methods of sampling and extraction. Matador Project. Technical Report F. Saskatoon,, Canada.

    Google Scholar 

  164. Winfield, A. L., and D. A. Cooke. 1974. The ecology of Trichodorus. Pages 309–340 inC. E. Taylor, F. Lamberti, and J. W. Seinhorst, editors. Nematode vectors of plant viruses. Plenum Press, New York, New York, USA.

    Google Scholar 

  165. Witkamp, M. 1966. Rates of carbon dioxide evolution from the forest floor. Ecology 47: 492 – 494.

    Google Scholar 

  166. Yeates, G. W. 1979. Soil nematodes in terrestrial ecosystems. J. Nematol. 11: 213 – 229.

    PubMed  CAS  Google Scholar 

  167. Yeates, G. W. 1981. Nematode populations in relation to soil environmental factors: a review. Pedobio. 22: 312 – 338.

    Google Scholar 

  168. Zicsi, A . 1958. Determination of number and size of sampling unit for estimating lumbricid populations of arable soils. Pages 68–71 inP. W. Murphy, editor. Progress in soil ecology. Butterworths-Publishing Company, London, England.

    Google Scholar 

  169. Zlotin, R. I. and K. S. Khodashova. 1980. The role of animals in biological cycling of forest-steppe ecosystems. Dowden, Hutchinson and Ross, Stroudsburg, Pennsylvania, USA.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1986 Martinus Nijhoff/Dr W. Junk Publishers, Dordrecht

About this chapter

Cite this chapter

Freckman, D.W., Cromack, K., Wallwork, J.A. (1986). Recent Advances in Quantitative Soil Biology. In: Mitchell, M.J., Nakas, J.P. (eds) Microfloral and faunal interactions in natural and agro-ecosystems. Developments in Biogeochemistry, vol 3. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-5173-0_10

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-5173-0_10

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8789-6

  • Online ISBN: 978-94-009-5173-0

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics