Skip to main content

Biosynthesis and regulation of polyamines in higher plants

  • Chapter
  • 66 Accesses

Part of the book series: Advances in Agricultural Biotechnology ((AABI,volume 18))

Abstract

The polyamines (PAs), spermidine (SPD) and spermine (SPN) and their diamine precursor, putiescine (PUT) represent a set of evolutionarily highly conserved small molecular weight organic polycations which play vital roles as modulators of a plethora of biological processes from enzyme activation and maintenance of ionic balance, through regulation of growth and development, to mediation of hormone action and progress of cell division cycle. Because of this functional versatility, research on PAs represents one of the most vigorously pursued areas of modern biology. While most of the currently available information on these important classes of bioregulators is derived from microbial and animal systems, interest in their possible participation in various facets of plant biochemistry and physiology is of relatively recent origin. The early pioneering investigations of Smith and others [34, 48. 62, 54, 63] on K+-deficient barley leaves, set the stage for the elucidation of the general metabolic sequence involved in the biogenesis of these amines in plants and pinpointed the important roles PAs play in maintenance of intracellular pH and ionic balance. However, with the recognition that plant systems also offer tremendous potential for unravelling the riddles concerncd with the biological functions of PAs. new vistas have been opened in plant PA research.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Alhonen-Hongisto L, Seppanen P. Holtta E, Janne J (1982) Replacement of natural polyamines by cudaverine and its aminopropyl derivatives in Ehrlich ascites carcinoma cells. Biochem Biophys Res Commun 106: 291–297

    Article  PubMed  CAS  Google Scholar 

  2. Altman A, Bachrach U (1981) Involvement of polyamines in plant growth and senescence. In: Caldarera CM et al.. eds. Advances in polyamine research. Vol 3. pp 365–375. New York: Raven Press

    Google Scholar 

  3. Altman A. Friedman R, Levin N (1983) Alternative pathways for polyaminc biosynthesis in plant development. In: Bachrach U et al., ed. Advances in Polyamine Research, Vol 4, pp 395–408. New York: Raven Press

    Google Scholar 

  4. Audisio S. Bagni N, Fracassini DS (1976) Polyamines during the growth in vitro of Nicotiana glauca R. Grah habituated tissue. Z Pflanzenphysiologie 77: 146–151

    CAS  Google Scholar 

  5. Bagni N (1970) Metabolic changes of polyamines during the germination of Phaseolus vulgaris. New Phytol 69: 159–164

    Article  CAS  Google Scholar 

  6. Bagni N and Fracassini DS (1974) The role of polyamines as growth factors in higher plants and their mechanism of action. In: Proceedings of Conference on Plant Growth Substances. Part VII, pp 1205–1217. Tokyo: Hirokawa Publishing Company

    Google Scholar 

  7. Baxter C, Coscia CJ (1973) In vitro synthesis of spermidine in the higher plant Vinca rosea. Biochem Biophys Res Commun 54: 147–154

    Article  PubMed  CAS  Google Scholar 

  8. Canellakis ES Viceps-Madore D Kyriakidis DA Heller JS (1979) The regulation and function of ornithine decarboxylase and of the polyamines. Curr Topics Cell Regln 15:155–202

    CAS  Google Scholar 

  9. Choudhuri MM, Ghosh B (1982) Purification and partial characterization of arginine decarboxylase from rice embryos (Oryza sativa L). Agric Biol Chem 46: 739–743

    Article  CAS  Google Scholar 

  10. Cohen E. Arad S. Heimer YM, Mizrahi Y (1982) Participation of ornithine decarboxylase in early stages of tomato fruit development. Plant Physiol 70: 540–543

    Article  PubMed  CAS  Google Scholar 

  11. Coppoc GL Kallio P Williams-Ashman HG (1971) Characteristics of S- adenoxyl-L-methionine decarboxylase from various organisms. Int J Biochem 2:673–68

    Article  CAS  Google Scholar 

  12. Crocomo OJ, Basso LC (1974) Accumulation of putrescine and related amino acids in potassium deficient Sesamum. Phytochem 13: 2659–2655

    Article  CAS  Google Scholar 

  13. Dai Y, Galston AW (1981) Simultaneous phytochrome controlled promotion and inhibition of arginine decarboxylase activity in buds and epicotyls of etiolated peas. Plant Physiol 67: 266–269

    Article  PubMed  CAS  Google Scholar 

  14. Dai Y, Kaur-Sawhney R, Galston AW (1981) Promotion by gibberellic acid of polyamine biosynthesis in internodes of light-grown dwarf peas Plant Physiol 69 103–105

    Article  Google Scholar 

  15. Feirer RP, Mignon G, Litvay JD (1984) Arginine decarboxylase and polyamines required for embryogenesis in the wild carrot. Science 223: 1433–1435

    Article  PubMed  CAS  Google Scholar 

  16. Flores MH, Galston AW (1982) Polyamines and plant stress: Activation of putrescine biosynthesis by osmotic shock. Science 217: 1259–1261

    Article  PubMed  CAS  Google Scholar 

  17. Flores HE. Young ND, Galston AW (1984) Polyamine metabolism and plant stress. In: Key JL, Kosuge T, eds. Cellular and Molecular Biology of Plant Stress-UCLA Symposia on Molecular and Cellular Biology. New Series. Vol 22. New York: Alan R. Liss

    Google Scholar 

  18. Galston AW (1983) Polyamines as modulators of plant development. BioScience 33: 382–388

    Article  CAS  Google Scholar 

  19. Goren R, Palavsn N, Galston AW (1982) Separating phytochrome effects on arginine decarboxylase activity from its effect on growth. J Plant Growth Regln 1: 61–73

    Article  CAS  Google Scholar 

  20. Heimer YM, Mizrahi Y, Bachrach U (1979) Ornithine decarboxylase activity in rapidly proliferating cells. FEBS Lett 104: 146–148

    Article  PubMed  CAS  Google Scholar 

  21. Janne J, Pösö H, Raina A (1978) Polyamines in rapid growth and cancer. Biochim Biophys Acta 473: 241–293

    PubMed  CAS  Google Scholar 

  22. Kaur-Sawhney R, Galston AW (1981) On the physiological significance of potyamines in higher plants. In: Sen SP.ed. Recent Developments in Plant Science, pp 129–144. New Delhi: Today and Tomorrow’s Printers

    Google Scholar 

  23. Kaur-Sawhney R. Shih LM, Galston AW (1982) Relation of polyamine synthesis and titer to aging and senescence in oat leaves. Plant Physiol 69: 405–410

    Article  PubMed  CAS  Google Scholar 

  24. Kaur-Sawhney K. Shih LM, Galston AW (1982) Relation of polyamine biosynthesis to the initiation of sprouting in potato tubers. Plant Physiol 69: 411–415

    Article  PubMed  CAS  Google Scholar 

  25. Kuehn GD, Atmar VJ (1982) Post-translational control of ornithine decarboxylase by polyamine dependent protein kinase. Fed Proc 41: 3078–3083

    PubMed  CAS  Google Scholar 

  26. Kuttan R, Radhakrishnan AN (1972) Studies on the biosynthesis of sym-homospermidine in sandal Santalum album L). Biochem J 127: 61–67

    PubMed  CAS  Google Scholar 

  27. Kyriakidis DA (1983) Effect of plant growth hormones and polyamines on ornithine decarboxylase activity during the germination of barley seeds. Physiol Plantarum 57: 499–504

    Article  CAS  Google Scholar 

  28. Kyriakidis DA. Panagiotidis CA, Georgatsos JG (1983) Ornithine decarboxylase ( Germinated barley seeds ). Methods Enzymol 94: 162–166

    Article  CAS  Google Scholar 

  29. Lea PJ, Norris RD (1976) The use of amino acid analogues in studies on plant amine metabolism. Phytochem 15: 585–595

    Article  CAS  Google Scholar 

  30. Maretzki A. Thom M, Nickell LG (1969) Products of arginine catabolism in growing cells of sugar-cane. Phytochem 8: 811–818

    Article  CAS  Google Scholar 

  31. McConlogue L, Coffino P (1983) Ornithine decarboxylase in dilluoromethyl- ornithine resistant mouse lymphoma cells. Two dimensional gel analysis of synthesis and turnover. J Bio Chem 258: 8384–8388

    CAS  Google Scholar 

  32. McConlogue L, Coffino P (1983) A mouse lymphoma cell mutant whose major protein product is ornithine decarboxylase. J Biol Chem 258: 12083–12086

    PubMed  CAS  Google Scholar 

  33. Montague MJ..Armstrong TA, Jaworski EG (1979) Polyamine metabolism in embryogenic cells of Daucus carota. II. Changes in arginine decarboxylase activity. Plant Physiol 63: 341–345

    Article  PubMed  CAS  Google Scholar 

  34. Muny KS, Smith TA, Bould C (1971) The relation between the putrescine content and potassium status of black currant leaves. Ann Bot 35: 687–695

    Google Scholar 

  35. Palavan N, Galston AW (1982) Polyamine biosynthesis and titer during various developmental stages of Phaseolus vulgaris. Physiol Plant 55: 438–444

    Article  CAS  Google Scholar 

  36. Panagiotidis CA. Georgatsos TG, Kyriakidis DA (1982) Super induction of cytosolic and chromatin bound ODC activities of germinating barley seeds by actinomycin D. FEBS Lett 146: 193–196

    Article  CAS  Google Scholar 

  37. Paulus TJ Kioyono P Davis RH (1982) Polyamine deficient Neurospora crassa mutants and synthesis of cadaverine. J Bacterial 152 291–297

    CAS  Google Scholar 

  38. Pegg AE (1979) Investigation of the turnover of rat liver S-adenosyl-L-methionine decarboxylase using specific antibody. J Biol Chem 254: 3249–3253

    PubMed  CAS  Google Scholar 

  39. Pegg AE, McGill S (1979) Decarboxylation of ornithine and lysine in rat tissues. Biochim Biophys Acta 568: 416–427

    PubMed  CAS  Google Scholar 

  40. Pegg AE, Willians-Ashman GH (1981) Biosynthesis of putrescine. In: Morris D, Marton LJ.eds. Polyamines Biology and Medicine, pp 3–42. New York: Marcel Dekker Inc.

    Google Scholar 

  41. Persson L (1981) Decarboxylation of ornithine and lysine by ornithine decarboxylase from kidneys of testosterone treated mice. Acta Chem Scand 35: 451–459

    Article  CAS  Google Scholar 

  42. Pösö H, Hannonen P, Himberg JJ, Jänne J (1976) Adenosyl-methionine decarboxylases from various organisms; relation of the putrescine activation of the enzyme to the ability of the organism to synthesize spermine. Biochem Biophys Res Comm 68: 227–234

    Article  PubMed  Google Scholar 

  43. Rao SLN, Ramachandran LK, Adiga PR (1963) The isolation and characterization of L-homoarginine from seeds of Lathyrus sativus. Biochemistry 2: 298–300

    Article  PubMed  CAS  Google Scholar 

  44. Ramakrishna S, Adiga PR (1974) Amine biosynthesis in Lathyrus sativus seedlings. Phytochem 13: 2161–2166

    Article  CAS  Google Scholar 

  45. Ramakrishna S, Adiga PR (1975) Amine levels in Lathyrus sativus seedling during development. Phytochem 14: 63–68

    Article  CAS  Google Scholar 

  46. Ramakrishna S, Adiga PR (1975) Arginine decarboxylase from Lathyrus sativus seedlings: Purification and properties. Eur J Biochem 59: 377–386

    Article  PubMed  CAS  Google Scholar 

  47. Ramakrishna S, Adiga PR (1976) Decarboxylation of homoarginine and lysine by an enzyme from Lathyrus sativus seedling. Phytochem 5: 83–86

    Article  Google Scholar 

  48. Richards FJ, Coleman RG (1952) Occurrence of putrescine in potassium deficient barley. Nature (London) 170: 460–461

    Article  PubMed  CAS  Google Scholar 

  49. Rorke EA, Katzenellenbogen BS (1984) Dissociated regulation of growth and ornithine decarboxylase activity by estrogen in rat uterus. Biochem Biophys Res Comm 122: 1186–1193

    Article  PubMed  CAS  Google Scholar 

  50. Russell DH (1980) Ornithine decarboxylase as a biological and pharmacological tool. Pharmacol 20: 117–129

    Article  Google Scholar 

  51. Russell DH (1983) Ornithine decarboxylase may be a multi-functional protein. Advances in Enzyme Regulation 21: 20l–222

    Google Scholar 

  52. Seiler N, Bolkenius FN, Rennert OM (1981) Interconversion, catabolism and elimination of the polyamines. Med Biol 59: 334–346

    PubMed  CAS  Google Scholar 

  53. Sindhu PK, Desai HV (1979) Purification and properties of agmatine iminohydrolase ftom groundnut cotyledons. Phytochem 18: 1937–1938

    Article  CAS  Google Scholar 

  54. Smith TA (1963) L-Arginine carboxy-lase of higher plants and its relation to potassium nutrition. Phytochem 2: 241–252

    Article  CAS  Google Scholar 

  55. Smith TA (1965) N-Carbamylputrescine amidohydrolase of higher plants and its relation to potassium nutrition. Phytochem 4:599–607

    Article  CAS  Google Scholar 

  56. Smith TA (1970) The biosynthesis and metabolism of putresrine in higher plants. Ann N Y Acad Sci 171: 988–1001

    Article  CAS  Google Scholar 

  57. Smith TA (1971) The occurrence. metabolism and functions of amines in plants. Biol Rev 46: 201–242

    Article  PubMed  CAS  Google Scholar 

  58. Smith TA (1975) Recent advances in the biochemistry of plant amines. Phytochem 14: 865–890

    Article  CAS  Google Scholar 

  59. Smith (1976) Polyamine oxidase from barley and oats. Phytochem 15: 633–636

    Article  CAS  Google Scholar 

  60. Smith TA (1979) Arginine decarboxylase of oat seedlings. Phytochem 18: 1447–1452

    Article  CAS  Google Scholar 

  61. Smith TA, Garraway JL (1964) N-Carbamylputrescine, an intermediate in the formation of putrescine by barley. Phytochem 3: 23–26

    Article  CAS  Google Scholar 

  62. Smith TA, Richards FJ (1962) The biosynthesis of putrescine in higher plants and its relation to potassium nutrition. Biochem J 84: 292–294

    PubMed  CAS  Google Scholar 

  63. Smith TA, Sinclair C (1967) The effect of acid feeding on amine formation in barley. Ann Bot 31: 103–111

    CAS  Google Scholar 

  64. Speranza A, Bagni N (1977) Putrescine biosynthesis in Agrobacterium tumefaciens and in normal and crown gall tissues of Scorzonera hispanica. Z Pflanzenphysiologie 81: 226–233

    CAS  Google Scholar 

  65. Srivenugopal KS, Adiga PR (1980) Co-existence of two pathways of spermidine biosynthesis in Lathyrus sativus seedlings. FEBS Lett 112: 260–264

    Article  PubMed  CAS  Google Scholar 

  66. Srivenugopal KS, Adiga PR (1980) Partial purification and properties of a transamidinase from Lathyrus sativus seedlings: Involvement in homoarginine metabolism and amine interconversions. Biochem J 189: 533–560

    Google Scholar 

  67. Srivenugopal KS, Adiga PR (1980) Enzymatic synthesis of sym-homospermidine In Lathyrus sativus seedlings. Biochem J 190 461–464

    PubMed  CAS  Google Scholar 

  68. Srivenugopal KS, Adiga PH (1981) Enzymic conversion of agmatine to putrescine in Lathyrus sativus seedlings Purification and properties of a multifunctional enzyme (putrescine synthase). J Biol Chem 256: 9532–9541

    PubMed  CAS  Google Scholar 

  69. Srivenugopal KS, Adiga PR (1983) Putrecscine synthase from Lathyrus sativus ( Grass pea) seedlings. Methods Enzymol 94: 335–339

    Article  CAS  Google Scholar 

  70. Suresh MR, Adiga PR (1977) Putrescine sensitive (artifactual) and insensitive (biosynthetic) S-adenosyl-L-methionine decarboxylase of Lathyrus sativus seedlings. Eur J Biochem 79: 511–518

    Article  PubMed  CAS  Google Scholar 

  71. Suresh MR Ramakrishna S Adiga PR (1978) Relation of arginine decarboxylase and putrescine levels in Cucumis sativus cotyledons Phytochem 17:57–63

    Google Scholar 

  72. Suzuki Y, Hirasawa E (1980) S-Adenosyl-L-methionine decarboxylase of corn seedling. Plant Physiol 66: 1091–1094

    Article  PubMed  CAS  Google Scholar 

  73. Tabor H, Tabor CW (1972) Biosynthesis and metabolism of l,4,diaminobutane, spermidine, spermine and related amines, Adv Enzymol 36: 203–268

    PubMed  CAS  Google Scholar 

  74. Tait GH (1976) A new pathway from the biosynthesis of spermidine. Biochem Soc Trans 4: 610–612

    PubMed  CAS  Google Scholar 

  75. Villlanueva VR. Adlakha RC, Cantera-Soler AM (1978) Changes in polyamine concentration during seed germination. Phytochem 17: 1245–1249

    Article  Google Scholar 

  76. Welch RG, Gaertner FH (1980) Enzyme organization in the polyaromatic biosynthesis pathway: The atom conjugate and other multienzyme systems. Curr Topics Cell Regln 16: 113–162

    CAS  Google Scholar 

  77. Yanagisawa H, Suzuki Y (1981) Corn agmatine iminohydrolase: Purification and properties. Plant Physiol 67: 697–700

    Article  PubMed  CAS  Google Scholar 

  78. Young ND, Galston AW (1983) Putrescine and acid stress: Induction of arginine decarboxylase aciivity and putrescine accumulation by low pH. Plant Physiol 71 767–771

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Martinus Nijhoff/Dr W. Junk Publishers, Dordrecht

About this chapter

Cite this chapter

Adiga, P.R., Prasad, G.L. (1985). Biosynthesis and regulation of polyamines in higher plants. In: Galston, A.W., Smith, T.A. (eds) Polyamines in Plants. Advances in Agricultural Biotechnology, vol 18. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-5171-6_1

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-5171-6_1

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8788-9

  • Online ISBN: 978-94-009-5171-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics