Skip to main content

Part of the book series: Advances in Agricultural Biotechnology ((AABI,volume 16))

Abstract

Atmospheric gases make existence possible through respiration and photosynthesis in animals and plants. Among these gases are oxygen and carbon dioxide abundantly present in the earth. Nitrogen is required for preserving nitrogen fixing microorganisms. The recent energy crisis has aroused interest in presence and utilization of methane and hydrogen as energy sources. In contrast to abundant gases, ethylene is the simplest unsaturated hydrocarbon compound and is a major product of the petroleum industry. In Japan, about four million tons of ethylene were produced in 1979 alone. It is of interest that this gas aets as a plant hormone.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

Literature Cited

  • Abeles, F. B. 1966. Auxin stimulation of ethylene evolution. Plant Physiol., 41: 585–588.

    PubMed  CAS  Google Scholar 

  • Abeles, F. B. 1968. Role of RNA and protein synthesis in abscission. Plant Physiol., 43: 1577–1580.

    PubMed  CAS  Google Scholar 

  • Abeles, F. B. 1969. Abscission: Role of cellulase. Plant Physiol., 44: 447–452.

    PubMed  CAS  Google Scholar 

  • Abeles, F. B., R. P. Bosshart, L. E. Forrence, and W. H. Habig, 1971. Preparation and purification of glucanase and chitinase from bean leaves. Plant Physiol., 47: 129–134.

    PubMed  CAS  Google Scholar 

  • Abeles, F. B., L. E. Craker, and G. R. Leather. 1971. Abscission: The phytogerontological effects of ethylene. Plant Physiol., 47: 7–9.

    PubMed  CAS  Google Scholar 

  • Abeles, F.B. and H. E. Gahagan. 1968. Abscission: The role of ethylene, ethylene analogues, carbon dioxide and oxygen. Plant Physiol., 43: 1255–1258.

    PubMed  CAS  Google Scholar 

  • Abeles, F. B. and R. E. Holm. 1967. Abscission: The role of protein synthesis. Ann. NY. Acad. Sci., 144: 367–373.

    CAS  Google Scholar 

  • Abeles, F. B. and G. R. Leather. 1971. Abscission: Control of cellulase secretion by ethylene. Planta, 97: 87–91.

    CAS  Google Scholar 

  • Abeles, F. B., G. R. Leather, L. E. Forrence, and L. E. Craker. 1971. Abscission: Regulation of senescence, protein synthesis and enzyme secretion by ethylene. HortScience, 6: 371–376.

    CAS  Google Scholar 

  • Abeles, F. B. and J. M. Ruth. 1972. Mechanism of hormone action: Use of deuterated ethylene to measure isotopic exchange with plant material and the biological effects of deuterated ethylene. Plant Physiol., 49: 669–671.

    PubMed  CAS  Google Scholar 

  • Abeles, F. B. and B. Rubinstein. 1964. Regulation of ethylene evolution and leaf abscission by auxin. Plant Physiol., 39: 963–969.

    PubMed  CAS  Google Scholar 

  • Adams, D. O. and S. F. Yang. 1977. Methionine metabolism in apple tissue. Implication of S-adenosylmethionine as an intermediate in the conversion of methionine to ethylene. Plant Physiol., 60: 892–896.

    PubMed  CAS  Google Scholar 

  • Adams, D. O. and S. F. Yang. 1979. Ethylene biosynthesis: Identification of l-aminocyclopropane-l-carboxylic acid as an intermediate in the conversion of methionine to ethylene. Proc. Natl. Acad. Sci. U. S. A., 76: 170–174.

    PubMed  CAS  Google Scholar 

  • Apelbaum, A. and S. P. Burg. 1972. Effect of ethylene on cell division and DNA synthesis in Pisum sativum. Plant Physiol., 50: 117–124.

    CAS  Google Scholar 

  • Barmore, C. R. 1975. Effect of ethylene on chlorophyllase activity and chlorophyll content in calamondin rind tissues. HortScience, 10: 595–596.

    CAS  Google Scholar 

  • Bayer, E. M. 1972. Mechanism of ethylene action. Biological activity of deuterated ethylene and evidence against isotopic exchange and cis-trans-isomerization. Plant Physiol., 49: 672–675.

    Google Scholar 

  • Behmer, M. 1958. Untersuchungen uber den Austausch von Kohlendioxyd und Athylen bei largernden Apfeln Klosterneuberg, Austraria. Hohere Bundeslehr-und Versuchsanaitalt fur Wein-und Obstbau. Ser. B. Obst und Garten, 8: 257–273.

    CAS  Google Scholar 

  • Beauchamp, C. and I. Fridovich. 1970. A mechanism for the production of ethylene from methional. J. Biol. Chem., 245: 4641–4646.

    PubMed  CAS  Google Scholar 

  • Biale, J. B. 1960. The postharvest biochemistry of tropical and sub-tropical fruits. Advances in Food Res., 10: 293–354.

    Google Scholar 

  • Biale, J. B. 1960. Respiration of fruits. In: Handbuch der Pflanzenphysiologie. W. Ruhland (ed.) Bd. 12/2, Springer-Verlag. Berlin.

    Google Scholar 

  • Biale, J. B., R. E. Young, and A. Olmstead. 1954. Fruit respiration and ethylene production. Plant Physiol., 29: 168–174.

    PubMed  CAS  Google Scholar 

  • Blanpied, G.D. 1971. Apparatus for ethylene extraction from plant tissue. HortScience, 6: 132–134.

    CAS  Google Scholar 

  • Boller, T. and H. Kende. 1980. Regulation of wound ethylene synthesis in plants. Nature, 286: 259–260.

    CAS  Google Scholar 

  • Bors, W., E. Lengfelder, M. Saran, C. Fuchs. and C. Michel. 1976. Reactions of oxygen radical species with methional: a pulse radiolysis study. Biochem. Biophys. Res. Commun., 70: 81–87.

    PubMed  CAS  Google Scholar 

  • Buhler, D. R., E. Hansen and C. H. Wang. 1957. Incorporation of ethylene into fruits. Nature, 179: 48–49.

    CAS  Google Scholar 

  • Burg, S. P. and E. A. Burg. 1962. Role of ethylene in fruit ripening. Plant Physiol., 37: 179–189.

    PubMed  CAS  Google Scholar 

  • Burg, S. P. and E. A. Burg. 1966. The interaction between auxin and ethylene and its role in plant growth. Proc. Natl. Acad. Sci. U.S.A., 55: 262–268.

    PubMed  CAS  Google Scholar 

  • Burg, S. P. and E. A. Burg. 1967. Molecular requirements for the biological activity of ethylene. Plant Physiol., 42: 144–152.

    PubMed  CAS  Google Scholar 

  • Burg, S. P. and C. O. Claggett. 1967. Conversion of methionine to ethylene in vegetative tissue and fruits. Biochem. Biophys. Res. Commun., 27: 125–130.

    PubMed  CAS  Google Scholar 

  • Burg, S. P. and A. J. Stolwijk. 1959. A highly sensitive katharometer and its application to the measurement of ethylene and other gases of biological importance. J. Biochem. Microbiol. Technol. and Eng., 1: 245–259.

    CAS  Google Scholar 

  • Burg, S. P. and K. V. Thimann. 1959. The physiology of ethylene formation in apples. Proc. Natl. Acad. Sci. U.S. A., 45: 335–344.

    PubMed  CAS  Google Scholar 

  • Burg, S. P. and K. V. Thimann. 1961. The conversion of glucose-14C to ethylene by apple tissue. Arch. Biochem. Biophys., 95: 450–457.

    PubMed  CAS  Google Scholar 

  • Chalutz, E., J. E. Devay and E. C. Maxie. 1969. Ethylene-induced isocoumarin formation in carrot root tissue. Plant Physiol., 44: 235–241.

    PubMed  CAS  Google Scholar 

  • Cohen, E. 1969. The degreening of Citrus in Israel. Inst. Tech. and Storage of Agric. Products. Agric. Res. Org., Special Pub., 128: 1–72.

    Google Scholar 

  • Cornforth, I. S. 1975. The persistance of ethylene in aerobic soils. Plant and Soil, 42: 85–96.

    CAS  Google Scholar 

  • Craker, L. E., L. A. Standlet, and M. J. Strabuck. 1971. Ethylene control of anthocyanin synthesis in sorghum. Plant Physiol., 45: 349–352.

    Google Scholar 

  • Crossett, R. N. and D. J. Campbell. 1975. The effects of ethylene in the root environment upon the development of barley. Plant and Soil, 42: 453–464.

    CAS  Google Scholar 

  • Croker, W., P. W. Zimmerman and Hitchcock. 1932. Ethylene-induced epinasty of leaves and the relation of gravity to it. Contrib. Boyce Thompson Inst., 4: 177–218.

    Google Scholar 

  • Dollwet, H. H. A. and R. E. Seeman. 1975. Propylene-A competitor of ethylene action. Plant Physiol., 56: 552–554.

    PubMed  CAS  Google Scholar 

  • Frenkel, C., I. Klein and D. R. Dilley. 1968. Protein synthesis in relation to ripening of pome fruits. Plant Physiol., 43: 1146–1153.

    PubMed  CAS  Google Scholar 

  • Freytag, A. H., J. D. Berlin, and J. C. Linden. 1977. Ethylene-induced fine structure alterations in cotton and sugarbeet radicle cells. Plant Physiol., 60: 140–143.

    PubMed  CAS  Google Scholar 

  • Fuchs, Y. and E. Gertman. 1973. Stabilization of enzyme activity by incubation in an ethylene atomsphere. Plant Cell Physiol., 14: 197–199.

    CAS  Google Scholar 

  • Fergus, C. L. 1954. The production of ethylene by Penicillium digitatum. Mycologia, 46: 543–555.

    Google Scholar 

  • Greef, J., M., Proft, and F. Winter. 1976. Gas chromatographic determination of ethylene in large air volumes at the fractional parts-per-billion level. Anal Chem., 48: 38.41.

    Google Scholar 

  • Goeschl, J. D., L. Rappaport, and H. K. Pratt. 1966. Ethylene as a factor regulating the growth of pea epicotyls subjected to physical stress. Plant Physiol., 41: 877–884.

    PubMed  CAS  Google Scholar 

  • Greenberg, J., R. Goren, and J. Riov. 1975. The role of cellulase and polygalacturonase in abscission of young and mature shamouti orange fruits. Physiol Plant. 34: 1–7.

    CAS  Google Scholar 

  • Hall, W. C. 1951. Studies on the origin of ethylene from plant tissue. Bot. Gaz., 113: 55–65.

    CAS  Google Scholar 

  • Hall, W. C. 1952. Evidence on the auxin-ethylene balance hypothesis of foliar abscission. Bot. Gaz., 113: 310.

    CAS  Google Scholar 

  • Hall, W. C., C. S. Miller and F. A. Herrero. 1959. Studies with 14C-ethylene. 4th Internat. Conf. Plant Growth Regulation, Ames, Iowa, Iowa State Univ. Press.

    Google Scholar 

  • Hall, W. C. and P. W. Morgan. 1964. Auxin ethylene interrelationships. In: Regulateur naturels de la crissance vegetale, Paris, CNRS, 123: pp. 727–745.

    Google Scholar 

  • Hall, J. L. and R. Sexton. 1974. Fine structure and cytochemistry of the abscission zone cells of Phaseolus leaves. II. Localization of peroxidase and acid phosphatase in the separation zone cells. Ann. Bot., 38: 855–858.

    CAS  Google Scholar 

  • Hall, J. L. and R Sexton. 1972. Cytochemical localization of peroxidase activity in root cells. Planta, 108: 103–120.

    CAS  Google Scholar 

  • Hansen, E. 1942. Quantitative study of ethylene production in relation to respiration of pears. Bot. Gaz., 103, 543–558.

    CAS  Google Scholar 

  • Hansen, E. 1943. Relation of ethylene production to respiration and ripening of premature pears. Proc. Am. Soc. Hort. Sci., 43: 69–72.

    CAS  Google Scholar 

  • Harvey, E. M. 1913. The castor bean plant laboratory air. Bot. Gaz., 56: 439–452.

    Google Scholar 

  • Herrero, F. A. and W. C. Hall. 1960. General effects of ethylene on enzyme systems in the cotton leaf. Physiol. Plant., 13: 736–750.

    CAS  Google Scholar 

  • Hiraki, Y. and Y. Ota. 1975. The relationship between growth inhibition and ethylene production by mechanical stimulation in Lilium longiflorum. Plant Cell Physiol., 16: 185–189.

    CAS  Google Scholar 

  • Horton, R. F. and D. J. Osborne. 1967. Senescence, abscission and cellulase activity in Phaseolus vulgaris. Nature, 214: 1086–1089.

    CAS  Google Scholar 

  • Hyodo, H. 1977. Ethylene production by albedo tissue of satsuma mandarin (Citrus unshiu Marc.) fruit. Plant Physiol., 59: 111–113.

    PubMed  CAS  Google Scholar 

  • Hulme, A. C., M. J. C. Rhodes, and L. S. C. Wooltorton. 1971. The relationship between ethylene and the synthesis of RNA and protein in ripening apples. Phytochem., 10: 749–756.

    CAS  Google Scholar 

  • Hyodo, H. and S. F. Yang. 1971. Ethylene-enhanced formation of cinnamic acid-4-hydroxylese in excised pea epicotyl tissue. Arch. Biochem. Biophys., 143: 338–339.

    PubMed  CAS  Google Scholar 

  • Jaffe, M. J. 1973. Thigmomorphogenesis: The response of plant growth and development to mechanical stimulation. Planta, 114: 143–157.

    Google Scholar 

  • Jones, J. D. and D. F. Meigh. 1967. The respiration climacteric in the apple. Proc. Canad. Soc. Plant Physiol., 8: 42.

    Google Scholar 

  • Kang, B. G. and S. P. Burg. 1972. Involvement of ethylene in phytochrome-mediated carotenoid synthesis. Plant Physiol., 49: 631–633.

    PubMed  CAS  Google Scholar 

  • Kidd, F. and C. West. 1945. Respiratory activity and duration of life of apples gathered at different stages of development and subsequently maintained at a constant temperature. Plant Physiol., 20: 467–504,

    PubMed  CAS  Google Scholar 

  • Kitagawa, H. 1973. Coloring of satsuma mandarin with ethylene. Japan Agr. Res. Quart., 7: 43–46.

    Google Scholar 

  • Koehler, D. E. and L. N. Lewis. 1979. Effect of ethylene on plasma membrane density in kidney bean abscission zones. Plant Physiol., 63: 677–679.

    PubMed  CAS  Google Scholar 

  • Konze, J. R. and H. Kende. 1979. Ethylene formation from l-amino-cyclopropane-l-carboxylic acid in homogenates of etiolated pea seedling. Planta, 146: 293–302.

    CAS  Google Scholar 

  • Leopold, A. C. 1972. Hormonal regulation in plant growth and development. H. Kaldewey and Y. Vardor, (ed.), Verlag Chemie, Weinheim, pp. 245.

    Google Scholar 

  • Lieberman, M. and C. C. Craft. 1961. Ethylene production by cytoplasmic particlec from apple and tomato fruits in the presence of thiomalic and thioglycolic acid. Nature. 189: 243.

    CAS  Google Scholar 

  • Lieberman, M. L. W. Mapson. 1964. Genesis and biogenesis of ethylene. Nature, 204: 343–345.

    CAS  Google Scholar 

  • Lieberman, M., L., W. Mapson, A.T. Kunishi, and D.A. Wardale. 1965. Ethylene production from methionine. Biochem. J. 97: 449–459.

    PubMed  CAS  Google Scholar 

  • Lieberman, M., A.T. Kunishi, L. W. Mapson, and D.A. Wardale. 1966. Stimulation of ethylene production in apple tissue slices by methionine. Plant Physiol., 41: 376–382.

    PubMed  CAS  Google Scholar 

  • Lieberman, M. and A. T. Kunishi. 1975. Ethylene-forming systems in etiolated pea seedlings and apple tissue. Plant Physiol., 55: 1074–1078.

    PubMed  CAS  Google Scholar 

  • Lieberman, M., A. T. Kunishi. and L. D. Owens. 1975. Specific inhibitors of ethylene production as retardants of the ripening process in fruits. In: Facteurs et Regulation de la Maturation des Fruits, Colloques Int. C.N.R.S. No. 238, Paris. pp. 161–170.

    Google Scholar 

  • Lurssen, K., K. Nauman, and R. Schroder. 1979. l-Aminocyclopropane-l-carboxylic acid-An intermediate of the ethylene biosynthesis in higher plants. Z. Pflanzenphysiol., 92: 285–294.

    Google Scholar 

  • Lyons, J. M. and H. K. Pratt. 1964. An effect of ethylene on swelling of isolated mitochondria. Arch. Biochem. Biophys., 104: 318–324.

    PubMed  CAS  Google Scholar 

  • Malhotra, S. S. and M. Spencer. 1974. Effects of ethylene, carbon dioxide and ethylene-carbon dioxide mixtures on the activities of membrane-containing and highly purified preparation of adenosine triphosphatase from pea-cotyledon mitochondria. Can. J. Biochem., 52: 1091–1096.

    PubMed  CAS  Google Scholar 

  • Mapson, L. W. and D. A. Wardale. 1967. Biosynthesis of ethylene. Formation of ethylene from methional by a cell-free enzyme system from cauliflower florets. Biochem. J., 102: 574–585.

    PubMed  CAS  Google Scholar 

  • Marei, N. and R. Romani 1971. Ethylene-stimulated synthesis of ribosomes, ribonucleic acid and protein in developing fig fruits. Plant Physiol., 48: 804–808.

    Google Scholar 

  • McGlasson, W. B., H. C. Dostal and E. D. Tigchelaar. 1975. Comparison of propylene-induced responses of immature fruit of normal and rin mutant tomatoes. Plant Physiol., 55: 218–222.

    PubMed  CAS  Google Scholar 

  • McMurchie, E. J., W. B. McGlasson and I. L. Eaks. 1972. Treatment of fruit with propylene gives information about the biosynthesis of ethylene. Nature, 237: 235–236.

    PubMed  CAS  Google Scholar 

  • Meigh, D. F. 1959. Nature of the olefines produced by apples. Nature, 184: 1072.

    CAS  Google Scholar 

  • Morgan, P. W. and W. C. Hall. 1962. Effect of 2, 4-D in the production of ethylene by cotton and grain sorghum. Plant Physiol., 15: 420–427.

    CAS  Google Scholar 

  • Olsen, A. O. and M. Spencer. 1968. A computor stimulation of the effect of ethylene on mitochondrial oxidative phosphorylation. Can. J. Biochem., 46: 514–520.

    Google Scholar 

  • Pegg, G. F. 1976. Physiol. plant pathology. In: Encyclopedia of Plant Physiology, 4: Springer Verlag, Berlin, Heiderberg & New York.

    Google Scholar 

  • Pegg, G. F. and D. K. Cronshaw. 1976. Ethylene production in tomato plants infected with Verticilium albo-atrum. Physiol Plant Path., 8: 279–295.

    CAS  Google Scholar 

  • Phan, C. T. 1960. Nouvelles observations sur les substances capables de stimuler la formation d’ ethylene par le Penicillium digitatum. Compt. Rend. Acad. Sci., (Paris). 251: 122–124.

    Google Scholar 

  • Porritt, S. W. 1951. The role of ethylene in fruit storage. Sci. Agric. , 31: 99–112.

    CAS  Google Scholar 

  • Pratt, H. K. and J. D. Goeschl. 1969. Physiological roles of ethylene in Plants. Ann. Rev. Plant Physiol., 20: 541–584.

    CAS  Google Scholar 

  • Pryor, W. A. and R. H. Tang. 1978. Ethylene formation from methional. Biochem. Biophys. Res. Commun., 81: 498–503.

    PubMed  CAS  Google Scholar 

  • Purohit, S. S. 1982. Prevention by kinetin of ethylene-induced chlorophyllase activity in senescing detached leaves of Helianthus animus. Biochem. Physiol. Pflanzen., 177: 625–637.

    CAS  Google Scholar 

  • Rasmussen, G. K. 1973. Changes in cellulase and pectinase activities in fruit tissues and separation zones of citrus treated with cycloheximide. Plant Physiol., 51: 626–628.

    PubMed  CAS  Google Scholar 

  • Ridge, I. 1969. Cell growth and cellulases: Regulation by ethylene and indole-3-acetic acid in shoots of Pisum sativum. Nature, 223: 19.

    Google Scholar 

  • Ridge, I. and D.J. Osborne. 1970. Hydroxyproline and peroxidase in cell walls of Pisum sativum regulation by ethylene. J. Exp. Bot., 21: 843–856.

    CAS  Google Scholar 

  • Ridge, I. and D. J. Osborne. 1971 Role of peroxidase when hydroxypro-line-rich protein in plant cell walls is increased by ethylene. Nature. New Biol. 229: 205–208.

    PubMed  CAS  Google Scholar 

  • Rivo, J., S. P. Monselise, and R. S. Kahan. (1969) Ethylene controlled induction of phenylalanine ammonia-lyase in citrus fruit peel. Plant Physiol., 44: 1371–1377.

    Google Scholar 

  • Rivo, J. and S. F. Yang, 1982. Autoinhibition of ethylene production in citrus peel discs. Plant Physiol., 69: 687–690.

    Google Scholar 

  • Sakai, S. and H. Imaseki, 1971. Auxin-induced ethylene production by mung bean hypocotyl segments. Plant Cell Physiol., 12: 349–359.

    CAS  Google Scholar 

  • Sakai, S. and H. Imaseki. 1972. Ethylene biosynthesis: Methionine as an in vivo precursor of ethylene in auxin-treated mung bean hypocotyl segments. Planta, 105: 165–173.

    CAS  Google Scholar 

  • Sakai, S., H. Imaseki and I. Uritani. 1970. Biosynthesis of ethylene in sweet potato root tissue. Plant Cell Physiol., 11: 737–745.

    CAS  Google Scholar 

  • Sargent, J. A. and D. J. Osborne. 1975. An effect of ethylene on the endoplasmic reticulum of expanding cells of etiolated shoots of Pisum stavium L. Planta, 124: 199–205.

    Google Scholar 

  • Shimokawa, K. and Z. Kasai. 1965. Liquid scintillation counting method of ethylene-14C. Radioisotopes, 14: 137–141.

    CAS  Google Scholar 

  • Shimokawa, K. and Z. Kasai. 1966. Biogenesis of ethylene in apple tissue. 1. Formation of ethylene from glucose, lacetate, pyruvate, and acetaldehyde in apple tissue. Plant Cell Physiol., 7: 1–9.

    Google Scholar 

  • Shimokawa, K. and Z. Kasai. 1967. Ethylene formation from ethyl moiety of ethionine. Science, 156: 1362–1363.

    PubMed  CAS  Google Scholar 

  • Shimokawa, K. and Z. Kasai. 1968. A Possible incorporation of ethylene into RNA in Japanese morning glory seedlings. Agric. Biol. Chem., 32: 680–682.

    CAS  Google Scholar 

  • Shimokawa, K., K. Yokoyama and Z. kasai. 1969. Fixation of ethylene-14C by Japanese moring glory seedlings (Pharbitis nil Chois) Mem. Res. Inst. Food Sci., Kyoto Univ., 30: 1–7.

    Google Scholar 

  • Shimokawa, K. and Z. Kasai. 1970. Ethylene formation from acrylic acid by a banana pulp extract. Agric. Biol Chem. 34: 1646–1651.

    CAS  Google Scholar 

  • Shimokawa, K. and N. Tominaga. 1972. A Simplified practical degreening method of satsuma mandarin with ethylene treatment. Agric. Hortic., 47: 95–96.

    Google Scholar 

  • Shimokawa, K., S. Shimada and K. Yaeo, 1978. Ethylene-enhances chlorophyllase activity during degreening of Citrus unshiu Marc. Scientia Hortic, 8: 129–135.

    CAS  Google Scholar 

  • Shimokawa, K., A. Sakanoshita and K. Horiba. 1978. Ethylene-induced changes of chloroplast structure in satsuma mandarin (Citrus unshiu Marc). Plant Cell Physiol., 19: 229–236.

    CAS  Google Scholar 

  • Shimokawa, K. 1981. Purification of ethylene-enhanced cholorophyllase from Citrus unshiu fruits. Agric. Biol. Chem., 45: 2357–2359.

    CAS  Google Scholar 

  • Shimokawa, K. 1982. Hydrophobic chromatographic purification of ethylene-enhanced chlorophyllase from Citrus uushiu fruits. Phytochemistry, 21: 543–545

    CAS  Google Scholar 

  • Shimokawa, K. 1983. The role of ethylene in fruit ripening. In: Aspects of Physiology and Biochemistry of Plant Hormones. S. S. Purohit (ed.) Kalyani Publishers, New Delhi. pp. 275–200.

    Google Scholar 

  • Sisler, E. and P. A. Wylie. 1978. In vivo measurement of binding to the ethylene-binding site. Plant Physiol., 61: -91.

    Google Scholar 

  • Smith, A. M. 1976. Ethylene in soil biology. Ann. Rev. Phytopathol. ,14: 53–73.

    CAS  Google Scholar 

  • Smith, A.M. and R.J. Cook. 1974. Implication of ethylene production by bacteria for biological balance of soil. Nature, 252: 703–705.

    CAS  Google Scholar 

  • Smith, K. A. and P. D. Robertson. 1971. Effect of ethylene on root extension of cereals. Nature, 234: 148–149.

    PubMed  CAS  Google Scholar 

  • Smith, K. A. and R. S. Russel. 1969. Occurrence of ethylene, and its significance in anaerobic soil. Nature, 222: 769–771.

    CAS  Google Scholar 

  • Solomos, T. and G. G. Laties. 1976. Induction by ethylene of cyanide resistant respiration. Biochem, Biophys. Res. Commun., 70: 663–671.

    CAS  Google Scholar 

  • Spencer, M.S. 1959. Production of ethylene by mitochondria from tomatoes. Nature, 184: 1231–1232.

    PubMed  CAS  Google Scholar 

  • Vendrell, M. and W. B. McGlasson. 1971. Inhibition of ethylene production in banana fruit tissue by ethylene treatment. Aust. J. Biol. Sci., 24: 885–895.

    CAS  Google Scholar 

  • Valdovinos, J. G., T. E. Jensen, and L. M. Sick. 1972. Fine structure of abscission zones. IV. Effect of ethylene on the ultrastructure of abscission cells of tobacco flower pedicels. Planta, 102: 324–333.

    CAS  Google Scholar 

  • Williamson, C. E. 1950. Ethylene, a metabolic product of diseased or injured plants. Phytopathology, 40: 205–208.

    CAS  Google Scholar 

  • Yang, S. F., Ku, H. S. and H. K. Pratt. 1967. Photochemical production of ethylene from methionine and its analogues in the presence of flavin mononucleotide. J. Biol. Chem., 242: 5274–5280.

    PubMed  CAS  Google Scholar 

  • Yang, S. F. 1967. Biosynthesis of ethylene: Ethylene formation from methional by horseradish peroxidase. Arch. Biochem. Biophys., 122: 481–487.

    PubMed  CAS  Google Scholar 

  • Yoshii, H. and H. Imaseki. 1982. Regulation of auxin-induced ethylene biosynthesis. Repression of inductive formation of l-aminocyclopropane-l-carboxylic acid synthase by ethylene. Plant Cell Physiol., 23: 639–649.

    CAS  Google Scholar 

  • Young, R.E., H. K. Pratt and J. B. Biale. 1952. Manometric determination of low concentrations of ethylene. Anal. Chem., 24: 551–555.

    CAS  Google Scholar 

  • Zeroni, M. and J. Galil. 1976. Autoinhibition of ethylene formation in non-ripening stage of the fruit of sycomore fig (Ficus sycomorus L.). Plant Physiol., 57: 647–650.

    PubMed  CAS  Google Scholar 

  • Zimmerman, P. W. and F. Wilcoxon. 1935. Several chemical growth substances which cause initiation of roots and other responsed in plants. Contrib. Boyce Thompson Inst., 7: 209–229.

    CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Martinus Nijhoff/Dr W. Junk Publishers, Dordrecht and Agro Botanical Publishers (India)

About this chapter

Cite this chapter

Shimokawa, K. (1985). Physiology and Biochemistry of Ethylene. In: Purohit, S.S. (eds) Hormonal Regulation of Plant Growth and Development. Advances in Agricultural Biotechnology, vol 16. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-5139-6_8

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-5139-6_8

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8773-5

  • Online ISBN: 978-94-009-5139-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics