Skip to main content

Part of the book series: NATO ASI Series ((NSSE,volume 94))

Abstract

Double displacement compliance and replica techniques were used to determine the macro and total crack lengths, respectively in nineteen crack-line wedge-loaded, double cantilever beam (CLWLDCB) mode I concrete specimens. Details of the fracture process zone, which lies between the macro and hairline crack tips, were determined through numerical experiments involving a finite element model of the CLWL-DCB concrete specimens. With a critical crack tip opening displacement (CTOD) at the macrocrack tip as a subcritical crack growth criterion, this fracture process zone was then incorporated into a finite element model of CLWL-DCB concrete specimen which was then driven in its propagation mode to reproduce some of the subcritical crack growth experiments. This finite element program was also used in its propagation mode to replicate mixed-mode fracture experiments involving diagonal tension fractures of modified CLWL-DCB concrete specimens.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Mindness, S. and J. S. Nadeau. Effect of Notch Width on KIC for Mortar and Concrete. Cement and Concrete Research, vol. 6 (1976) 529–534.

    Article  Google Scholar 

  2. Zaitsev, J. W. and F. H. Wittman. Crack Propagation in a Two-Phase Material Such as Concrete. Fracture 1977, vol. 3 (Waterloo, ICF4, 1977) 1197–1203.

    Google Scholar 

  3. Mazars, J. Existence of a Critical Strain Energy Release Rate for Concrete. Fracture 1977, vol. 3 (Waterloo, TCF4, 1977) 1205–1209.

    Google Scholar 

  4. Saouma, V. E., A. R. Ingraffea and D. M. Catalano. Fracture Toughness of Concrete — KIC Revisited. Journal of Engineering Mechanics, ASCE, vol. 108 1982 ) 1152–1166.

    Google Scholar 

  5. Chappell, J. F. and A. R. Ingraffea. A Fracture Mechanics Investigation of the Cracking of Fontana Dam. Report 81–7 (Cornell University 1981 ).

    Google Scholar 

  6. Go, C.-G. and S. E. Swartz. Fracture Toughness Techniques to Predict Crack Growth and Tensile Failure in Concrete. Report 154 (Kansas State University 1983 ).

    Google Scholar 

  7. Hillerborg, A., M. Modeer and P. E. Petersson. Analysis of Crack Formation and Crack Growth in Concrete by Means of Fracture Mechanics and Finite Element. Cement and Concrete Research, vol. 6 (1976) 773–781.

    Article  Google Scholar 

  8. Petersson, P. E. Fracture Energy of Concrete: Method of Determination. Cement and Concrete Research, vol. 10 (1980) 79–89, and Fracture Energy of Concrete: Practical Performance and Experimental Results. Cement and Concrete Research, vol. 1, (1980) 91–101.

    Article  Google Scholar 

  9. Bazant, Z. P. and S. S. Kim. Plastic-Fracturing Theory for Concrete. Journal of Engineering Mechanics, ASCE, vol. 105 (1979) 407–428.

    Google Scholar 

  10. Bazant, Z. P. and B. H. Oh. Crack Band Theory for Fracture of Concrete. Materieuax et Constructions, vol. 16 (1982) 155–177.

    Article  Google Scholar 

  11. Wecharatana, M. and S. P. Shah. Prediction of Nonlinear Fracture Process Zone in Concrete. Journal of Engineering Mechanics, ASCE, vol. 109 (1983) 1231–1246.

    Article  Google Scholar 

  12. Kesler, C., D. Naus and J. Lott. Fracture Mechanics — Its Applicability to Concrete. Proceedings of International Conference on Mechanical Behavior Materials, vol. 4 (1972) 113–124.

    Google Scholar 

  13. Scordellis, A. C. Finite Element Analysis of Reinforced Concrete Structures. Proceedings of Specialty Conference on Finite Element Method in Civil Engineering (Montreal 1972 ) 71–114.

    Google Scholar 

  14. Saouma, V. E. Interactive Finite Element Analysis of Reinforced Concrete: A Fracture Mechanics Approach. Report 81–5 (Cornell University 1981 ).

    Google Scholar 

  15. Baker, D. B., N. M. Hawkins, F.-L. Jeang, K.-Z. Cho and A. S. Kobayashi. Experimental Investigation of Concrete Fracture in a CLWL Specimen. To be submitted.

    Google Scholar 

  16. Kobayashi, T. and W. L. Fourney. Experimental Characterization of the Development of Micro-Crack Process Zone at a Crack Tip on Rock under Load. 19th US National Symposium on Rock Mechanics (May 1979).

    Google Scholar 

  17. Dugdale, D. S. Yielding of Steel Sheets Containing Slits. J. of Mechanics, Physics and Solids. vol 8 (1960) 100–104.

    Article  ADS  Google Scholar 

  18. Barrenblatt, G. J. The Mathematical Theory of Equilibrium Crack in the Brittle Fracture. Advances in Applied Mechanics. vol. 7 (1962) 55–125.

    Article  Google Scholar 

  19. Kobayashi, A. S. Dynamic Fracture Analysis by Dynamic Finite Element Method — Generation and Propagation Analyses. Nonlinear and Dynamic Fracture Mechanics. ed. by N. Perrone and S. N. Atluri, ASME-AMD-vol. 35 (1979) 19–36.

    Google Scholar 

  20. Lee, O. S. and A. S. Kobayashi. Crack Tip Plasticity of a Tearing Crack. Submitted for publication in Fracture Mechanics (16) ASTM STP.

    Google Scholar 

  21. Kanninen, M. F., E. F. Rybicky, R. B. Stonesifer, D. Broek, A. R. Rosenfield, C. W. Marschall and G. T. Hahn. Elastic-Plastic Fracture Mechanics for Two-Dimensional Stable Crack Growth and Instability Problems. Elastic-Plastic Fracture. ed. by J. D. Landes, J. A. Begley and G. A. Clarke, ASTM STP 668 (1979) 121–150.

    Chapter  Google Scholar 

  22. Shih, C. F., H. G. deLorenzi and W. R. Andrews. Studies on Crack Initiation and Stable Crack Growth. Elastic-Plastic Fracture, ed. by J. D. Landes, J. A. Begley and G. A. Clarke, ASTM STP 668 (1979) 65–120.

    Chapter  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Martinus Nijhoff Publishers, Dordrecht

About this chapter

Cite this chapter

Kobayashi, A.S., Hawkins, N.M., Barker, D.B., Liaw, B.M. (1985). Fracture Process Zone of Concrete. In: Shah, S.P. (eds) Application of Fracture Mechanics to Cementitious Composites. NATO ASI Series, vol 94. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-5121-1_2

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-5121-1_2

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8764-3

  • Online ISBN: 978-94-009-5121-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics