Skip to main content

Part of the book series: NATO ASI Series ((NSSE,volume 94))

  • 494 Accesses

Abstract

A mathematical model for concrete has been developed by combining a multiple-plane plasticity and fracture model with a cap model for compaction. The model provides for the anisotropy of tensile and shear behavior and also for nonlinear compaction. The model is primarily intended to represent the response of concrete structures to impact loading.

The model shows the usual differences in loading and unloading pressure-volume paths for compaction, and also shear stresses in the model enhance the compaction process. Shear stresses on each of seven planes are computed using a Mohr-Coulomb yield curve. Shear damage on a plane causes loss of shearing and tensile strength. Initially, the model has a macro character for ease in matching experimental data, but is extendable later to have micromechanical features for generality and for guidance in scaling calculations.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Drucker, D. C. and W. Prager. Soil Mechanics and Plastic Analysis or Limit Design. Quarterly of Applied Mathematics 10 (1952) 157–165.

    MathSciNet  MATH  Google Scholar 

  2. Chen, W. F. Plasticity in Reinforced Concrete ( McGraw-Hill, New York, 1981 ).

    Google Scholar 

  3. Chen, W. F. Plasticity in Reinforced Concrete. Proceedings of a Workshop on Constitutive Relations for Concrete, New Mexico Engineering Research Institute, University of New Mexico, Albuquerque, N.M., April 28, 29, 1981.

    Google Scholar 

  4. Lindberg, H. E. and L. E. Schwer. Choice and Construction of Yield Functions for Underground Cavity Analysis. Poulter Laboratory Technical Report (SRI International, Menlo Park, California 94025).

    Google Scholar 

  5. Schleicher, F. The Energy Limit of Elasticity (in German), Zeitschrift fuer Angewandte Mathematik and Mechanik 5, 6 (1925) 478–479.

    MATH  Google Scholar 

  6. Seaman, L. One-Dimensional Stress Wave Propagation in Soils. Final Report DASA 1757 by SRI International for Defense Atomic Support Agency (Washington, D.C. 20301, February 1966 ).

    Google Scholar 

  7. Shockey. D. A, D. R. Curran, L. Seaman, J. T. Rosenberg, and C. F. Petersen. Failure of Rock under High Tensile Loads. Int. J. Rock Mech. Sci. Geomech. Abstr. 11 (1974) 303–317.

    Article  Google Scholar 

  8. Linde, R. K., L. Seaman, and D. N. Schmidt. Shock Response of Porous Copper, Iron, Tungsten and Polyurethane. J. of Appl. Phys. 43, 8 (August 1972) 3367.

    Article  ADS  Google Scholar 

  9. Bazant, Z. P. Mathematical Modeling of Concrete and Its Experimental Basis. Proceedings of a Workshop on Constitutive Relations for Concrete (New Mexico Engineering Research Institute, University of New Mexico, Albuquerque, N. M., April 28, 29, 1981 ).

    Google Scholar 

  10. Seaman, L., D. R. Curran, and D. A. Shockey. Computational Models for Ductile and Brittle Fracture. J. Appl. Phys. 47 (1976) 4814–4826.

    Article  ADS  Google Scholar 

  11. Murri, W. J., C. Young, D. A. Shockey, R. E. Tokheim, and D. R. Curran. Determination of Dynamic Fracture Parameters for Oil Shale. SRI International Final Report to Sandia Laboratories (Alburquerque, New Mexico, 1977.).

    Google Scholar 

  12. Gupta, Y. M. and L. Seaman. Local Response of Reinforced Concrete to Missile Impact. SRI International Final Report No. EPRI NP-1217 (Electric Power Research Institute, Palo Alto, California, October 1979 ).

    Google Scholar 

  13. Curran, D. R., D. A. Shockey, and L. Seaman. Dynamic Fracture Criteria for a Polycarbonate. J. Appl. Phys. 44 (1973) 4025.

    Article  ADS  Google Scholar 

  14. Batdorf, S. B. and B. Budiansky. A Mathematical Theory of Plasticity Based on the Concept of Slip. National Advisory Committee for Aeronautics Technical Note No. 1871 ( Washington, April 1949 ).

    Google Scholar 

  15. Como, Mario and Salvatore D’Agostino. Strain Hardening Plasticity with Bauschinger Effect. Meccanica 4, 2 (1969) 146–158.

    Article  Google Scholar 

  16. Como, Mario and Antonio Grimaldi. Analytical Formulation of the Theoretical Subsequent Yield Surfaces of Metals with Strain-Hardening and Bauschinger Effect in an Ideal Tension-Torsion Test. Meccanica 4, 4 (1969) 286.–297.

    Article  Google Scholar 

  17. Naghdi, P. M., F. Essenburg, and W. Koff. An Experimental Study of Initial and Subsequent Yield Surfaces in Plasticity. J. Appl. Mech. 25 (1958) 201–209.

    Google Scholar 

  18. Bazant, Z. P. and B. H. Oh. Microplane Model for Fracture Analysis of Concrete Structures. Proceedings of the Symposium on the Interaction of Non-Nuclear Munitions with Structures (U.S. Air Force Academy, Colorado, May 10–13, 1983 ).

    Google Scholar 

  19. Seaman, L., D. R. Curran, and W. J. Murri. A Continuum Model for Dynamic Tensile Microfracture and Fragmentation. J. Appl. Mech. ASME, to appear.

    Google Scholar 

  20. Seaman, L., D. R. Curran. Behavior Under High Stress and Ultrahigh Loading Rates, eds. J. Mescall and V. Weiss ( Plenum Press, New York, 1983 ).

    Google Scholar 

  21. Seaman, L. and J. L. Dein. Representing Shear Band Damage at High Strain Rates, IUTAM Symposium on Nonlinear Deformation Waves (Tallinn, Estonia, August 22–28, 1982 ).

    Google Scholar 

  22. Drucker, D. C., R. E. Gibson, and D. J. Henkel. Soil Mechanics and Work-hardening Theories of Plasticity. Trans of the Amer. Soc. of Civil Eng.. 121 (1956) 338–346.

    Google Scholar 

  23. Sandler, I., F. L. DiMaggio, and G. Y. Baladi. Generalized Cap Model for Geological Materials. J. Geotech. Div., ASCE 102, GT7 (July 1976) 683–699.

    Google Scholar 

  24. Bazant, Z. P. and P. D. Bhat. Endochronic Theory of Inelasticity and Failure of Concrete, J. Eng. Mech. Div., ASCE 102 (1976) 701–722.

    Google Scholar 

  25. Bazant, Z. P. and Sang-Sik Kim. Plastic-Fracturing Theory for Concrete. J. Eng. Mech. Div., ASCE 105 (1979) 407–428.

    Google Scholar 

  26. Wittman F. H. and Yu. V. Zaitsev. Crack Propagation and Fracture of Composite Materials such as Concrete, 5th Int. Conf. on Fracture, ed. D. Francois, 5, 2261–2274 (Cannes, France, Mar. 29–Apr. 3, 1981 ).

    Google Scholar 

  27. Malvern, L. E. The Propagation of Longitudinal Waves of Plastic Deformation in a Bar of Material Exhibiting a Strain-Rate Effect. J. Appl. Mech. 18 (1951) 203–208.

    MathSciNet  Google Scholar 

  28. Taylor, G. I. Plastic Strain in Metals. J. Inst. Metals 62 (1938) 307.

    Google Scholar 

  29. Peirce, D., R. J. Asaro, and A. Needleman. Material Rate Dependence and Localized Deformation in Crystalline Solids. Acta Metall. 31 (1983) 1951–1976.

    Article  Google Scholar 

  30. Sneddon, I. N. and M. Lowengrub. Crack Problems in the Classical Theory of Elasticity (John Wiley and Sons, Inc., New York, 1969 ).

    MATH  Google Scholar 

  31. He, M. Y. and J. W. Hutchinson. The Penny-Shaped Crack and Plane Strain Crack in an Infinite Body of Power-Law Material. J. Appl. Mech., Trans. of the ASME 48 (Dec. 1981) 830–840.

    Article  ADS  MATH  Google Scholar 

  32. Bhatt, J. J., M. M. Carroll, and J. F. Schatz. A Spherical Model Calculation for Volumetric Response of Porous Rocks. Paper No. 75-APMW-49, J. Appl. Mech. Trans. of the ASME (March 1975).

    Google Scholar 

  33. Gurson, A. L. Continuum Theory of Ductile Rupture by Void Nucleation and Growth: Part I — Yield Criteria and Flow Rules for Porous Ductile Media. J. Eng. Materials and Tech., Trans. of the ASME (January 1977) 2–15.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Martinus Nijhoff Publishers, Dordrecht

About this chapter

Cite this chapter

Seaman, L., Gran, J., Curran, D.R. (1985). A Microstructural Approach to Fracture of Concrete. In: Shah, S.P. (eds) Application of Fracture Mechanics to Cementitious Composites. NATO ASI Series, vol 94. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-5121-1_16

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-5121-1_16

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8764-3

  • Online ISBN: 978-94-009-5121-1

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics