Skip to main content

Part of the book series: NATO ASI Series ((NSSE,volume 93))

  • 244 Accesses

Abstract

Artificial joint replacement is a procedure performed relatively often in modern orthopaedic surgery. An estimated total of 65,000 patients annually in the U.S.A. (1), for example, and probably about an equal number in the rest of the world, receive total hip replacement (THR) for relief of pain and restoration of function. Most of these patients are over 60 years of age, and have severe osteoarthritis of the hip. Smaller groups suffer from post-traumatic conditions, rheumatoid arthritis or other disorders. Very few are younger than 50. THR represents major surgery, which is very successful as a treatment of severe disorders of the hip, both from the point of view of immediate post-operative pain relief and restoration of function, as well as its long-term results (1).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Consensus Development Panel, NIH-Consensus Paper: Total Hip Joint Replacement, Bethesda, MD. Partly published in JAMA, vol. 248, no. 15, (1982) p. 1817.

    Google Scholar 

  2. Charnley, J. The Long-Term Results of Low Friction Arthroplasty of the Hip Performed as a Primary Intervention. J. Bone Jt. Surg. 45-B (1972) p. 61.

    Google Scholar 

  3. Stauffer, R.N. Ten-Year Follow-up Study of Total Hip Replacement. J. Bone Jt. Surg. 64-A (1982) p. 1983.

    Google Scholar 

  4. Feith, R. Side-Effects of Acrylic Cement, Implanted into Bone. Acta Orthop. Scand. Suppl. no. 161, 1975.

    Google Scholar 

  5. Huiskes, R. Some Fundamental Aspects of Human Joint Replacement, Section II: Heat Generation and Conduction Analyses of Acrylic Bone Cement in Situ. Acta Orthop. Scand. Suppl. no. 185 ( Munskgaard, Copenhagen, 1979) p. 43.

    Google Scholar 

  6. Willert, H.G. and M. Semlitsch. Problems Associated with the Cement Anchorage of Artificial Joints. In: Advances in Artificial Hip and Knee Joint Technology (Edited by N. Schaldach and D. Hohmann, Springer Verlag, Berlin, Heidelberg, New York, 1976).

    Google Scholar 

  7. Freeman, M.A.R., G.W. Bradley, and P.A. Revell. Observations upon the Interface between Bone and Polymethylmethacrylate Cement. J. Bone Jt. Surg. 64-B (1982) p. 489.

    Google Scholar 

  8. Radin, E.L., C.T. Rubin, E.L. Trasher, L.E. Lanyon, A.M. Crugnola, A.S. Schiller, I.L. Paul, and R.M. Rose. Changes in the Bone-Cement Interface after Total Hip Replacement. J. Bone Jt. Surg. 64-A (1982) p. 1188.

    Google Scholar 

  9. Huiskes, R. Design, Fixation and Stress Analysis of Permanent Orthopedic Implants: The Hip Joint. In: Functional Behavior of Orthopedic Materials (Edited by P. Ducheyne and G. Hastings, CRC-Press, Boca Raton, FL, vol. 2, ch. 5, 1983).

    Google Scholar 

  10. Durelli, A.J. The Difficult Choice: Evaluation of Methods Used to Determine Experimentally Displacements, Strains and Stresses. App. Mech. Rev. 30, 9 (1977) p. 1167.

    Google Scholar 

  11. Huiskes, R. Principles and Methods of Solid Biomechanics. In: Functional Behavior of Orthopedic Materials (Edited by P. Ducheyne and G. Hastings, CRC-Press, Boca Raton, FL, vol. 1, ch. 4, 1983).

    Google Scholar 

  12. Reilly, D.T. and A.H. Burstein. The Elastic and Ultimate Properties of Compact Bone Tissue. J. Biomechanics 8 (1975) p. 393.

    Article  CAS  Google Scholar 

  13. Lanyon, L.E. The Measurement and Biological Significance of Bone Strain in Vivo. In: Mechanical Properties of Bone. (Edited by S.C. Cowin, AMD - vol. 45, ASME, New York, 1981) p. 93.

    Google Scholar 

  14. Huiskes, R., J.D. Janssen, and T.J. Slooff. A Detailed Comparison of Experimental and Theoretical Stress Analyses of a Human Femur. In: Mechanical Properties of Bone (Edited by S.C. Cowin, AMD - vol. 45, ASME, New York, 1981) p. 211.

    Google Scholar 

  15. Oh, I. and W.H. Harris. Proximal Strain Distribution in the Loaded Femur. J. Bone Jt. Surg. 60-A (1978) p. 75.

    Google Scholar 

  16. Jacob, H.A.C. and A.H. Huggler. An Investigation into Biomechanical Causes of Prosthesis Stem Loosening within the Proximal End of the Human Femur. J. Biomechanics 13 (1980) p. 159.

    Article  CAS  Google Scholar 

  17. Crowninshield, R.D., D.R. Pedersen, and R.A. Brand. A Measure¬ment of Proximal Femur Strain with Total Hip Arthroplasty. J. Biomech. Engrg. 102 (1980) p. 230.

    Article  CAS  Google Scholar 

  18. Rohlman, A., G. Bergmann, and R. Koelbel. The Relevance of Stress Computation in the Femur with and without Endopros¬theses. In: Finite Elements in Biomechanics (Edited by R.H. Gallagher et al., John Wiley and Sons, New York, 1982) p. 361.

    Google Scholar 

  19. Huiskes, R . Some Fundamental Aspects of Human Joint Replace¬ment. Part III: Stress Analyses of Intramedullary Fixation Systems. Acta Orthop. Scand. Suppl. no. 185 (Munskgaard, Copenhagen, 1979) p. 109.

    Google Scholar 

  20. Timoshenko, S.P., and J.N. Goodier. Theory of Elasticity (3rd ed.) (McGraw-Hill, Kogahuska, Tokyo, 1970).

    Google Scholar 

  21. Huiskes, R. and E.Y.S. Chao. Optimal Stem Design in Tumor Prostheses. In: Tumor Prosthesis for Bone and Joint Recon¬struction (Edited by E.Y. Chao and J.C. Ivins, Thieme Stratton, New York, sect. 4, ch. 44, 1983) p. 367.

    Google Scholar 

  22. Brekelmans, W.A.M., H.W. Poort, and T.J.J.H. Slooff. A New Method to Analyse the Mechanical Behavior of Skeletal parts. Acta Orthop. Scand. 43 (1972) p. 301.

    Article  PubMed  CAS  Google Scholar 

  23. Zienkiewicz, O.C. The Finite Element Method (3rd ed.) ( McGraw-Hill, London, 1977).

    Google Scholar 

  24. Huiskes, R. and E.Y.S. Chao. A Survey of Finite Element Analysis in Orthopaedic Biomechanics: The First Decade. J. Biomechanics 16 (1983) p. 385.

    Article  CAS  Google Scholar 

  25. McNeice, G.M., P. Eng and H.C. Amstutz. Finite Element Studies in Hip Reconstruction. In: Biomechanics V-A. (Edited by P. V. Komi, Univ. Park Press, Baltimore, MD, 1976) p. 394.

    Google Scholar 

  26. Andriacchi, T.P., J.O. Galante, T.B. Belytschko, and S. Hampton. A Stress Analysis of the Femoral Stem in Total Hip Prostheses. J. Bone Jt. Surg. 58-A (1976) p. 616.

    Google Scholar 

  27. Svensson, N.L., S. Valliappan, and R.D. Wood. Stress Analysis of Human Femur with Implanted Charnley Prostheses. J. Biomechanics 10 (19) p. 581.

    Google Scholar 

  28. Roehrle, H., R. Scholten, W. Sollbach, G. Ritter, and A. Gruenert. Der Kraftfluss bei Huftendoprothesen. Arch. Orthop. Unfall-Chir. 89 (1977) p. 49.

    Article  Google Scholar 

  29. Hampton, S.J., T.P. Andriacchi, and J.O. Galante. Three- dimensional Stress Analysis of the Femoral Stem of a Total Hip Prosthesis. J. Biomechanics 13 (1980) p. 443.

    Article  CAS  Google Scholar 

  30. Crowninshield, R.D., R.A. Brand, R.C. Johnston, and J.C. Milroy. An Analysis of Femoral Component Stem Design in Total Hip Arthroplasty. J. Bone Jt. Surg. 62-A (1980) p. 68.

    Google Scholar 

  31. Tarr, R.R., I.C. Clarke, T.A. Gruen, and A. Sarmiento. Predictions of Cement-Bone Failure Criteria: Three-dimensional Finite Element Models versus Clinical Reality of Total Hip Replacement. In: Finite Elements in Biomechanics. (Edited by R. H. Gallagher et al., John Wiley and Sons, New York, 1982) p. 345.

    Google Scholar 

  32. Rohlmann, A., G. Bermann, and R. Koelbel. Aussagewert und Grenzen der Spannungsberechnung mit der Finiten-Element-Methode (FEM) bei Orhtopadischen Problemen. Z. Orthop. 118 (1980) p. 122.

    Article  PubMed  CAS  Google Scholar 

  33. Vasu, R., D.R. Carter, and W.H. Harris. Stress Distributions in the Acetabular Region-I. Before and After Total Joint Replacement. J. Biomechanics 15 (1982) p. 155.

    Article  CAS  Google Scholar 

  34. Pedersen, D.R., R.D. Crowninshield, R.A. Brand, and R.C. Johnston. An Axisymmetric Model of Acetabular Components in Total Hip Arthroplasty. J. Biomechanics 15 (1982) p. 305.

    Article  CAS  Google Scholar 

  35. Shybut, G.T., M.J. Askew, R.Y. Hori, and S.D. Stulberg. Theoretical and Experimental Studies of Femoral Stresses Following Surface Replacement Hip Arthroplasty. In: The Hip, chap. 10 (The C. V. Mosby Co., St. Louis, MO, 1980) p. 192.

    Google Scholar 

  36. Huiskes, R. and J. van Heck. Stresses in the Femoral Head-Neck Region after Surface Replacement, a Three-dimensional Finite Element Analysis. Proceedings 27th Annual Meeting Orthop. Res. Soc. (1981) p. 174.

    Google Scholar 

  37. Croon, H.W., D.H. van Campen, J. Klok, and R. Miehlke. Quasi Two-dimensional FEM Analysis and Experimental Investigations of the Tibial Part of Knee Endoprostheses with Intramedullary Stems. In: Biomechanics: Principles and Applications. (Edited by R. Huiskes et al., Martinus Nijhoff Publ., The Hague, Boston, London, 1982) p. 313.

    Google Scholar 

  38. Roehrle, H., W. Sollbach, and J. Gekeler. Stress Analysis in Artificial Knee Joints with Fixed and Movable Axis Using the Finite Element Method. In: Biomechanics: Principles and Applications (Edited by R. Huiskes et al., Martinus Nijhoff Publ., The Hague, Boston, London, 1982) p. 305.

    Google Scholar 

  39. Askew, M.J. and J.L. Lewis. Analysis of Model Variables and Fixation Post Length Effects on Stresses around a Prosthesis in the Proximal Tibia. J. Biomech. Engng. 103 (1981) p. 239.

    Article  CAS  Google Scholar 

  40. K. Murase, R.D. Crowninshield, D.R. Pedersen, and T.S. Chang. An Analysis of Tibial Component Design in Total Knee Arthroplasty. J. Biomechanics 16 (1982) p. 13.

    Article  Google Scholar 

  41. Bartel, D.L., A.H. Burstein, E.A. Santavicca, and J.N. Insall. Performance of the Tibial Component in Total Knee Replacement. J. Bone Jt. Surg. 64-A (1982) p. 1026.

    Google Scholar 

  42. Lewis, J.L., M.J. Askew, and D.P. Jaycox. A Comparative Evaluation of Tibial Component Designs of Total Knee Prosthesis. J. Bone Jt. Surg. 64-A (1982) p. 129.

    Google Scholar 

  43. Huiskes, R., J. van Heck, P.S. Walker, D.J. Green, and D. Nunamaker. A Three-dimensional Stress Analysis of a New Finger-Joint Prosthesis Fixation System. In: Int. Conf. Proceedings on Finite Elements in Biomechanics (Edited by B.R. Simon, Univ. of Arizona Press, Tucson, AZ, 1980) p. 749.

    Google Scholar 

  44. Swenson, L.W., D.J. Schurman, and R.L. Piziali. Finite Element Temperature Analysis of a Total Hip Replacement and Measurement of PMMA Curing Temperatures. J. Biomed. Mat. Res. 15 (1981) p. 83.

    Article  CAS  Google Scholar 

  45. Cowin, S.C . Continuum Models of Adaption of Bone to Stress. In: Mechanical Properties of Bone (Edited by S.C. Cowin, AMD-vol. 45, the Am. Soc. of Mech. Engrs., New York, 1981) p. 193.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Martinus Nijhoff Publishers, Dordrecht

About this chapter

Cite this chapter

Huiskes, R. (1985). Stress Analysis and Fixation Problems in Joint Replacement. In: Berme, N., Engin, A.E., Correia da Silva, K.M. (eds) Biomechanics of Normal and Pathological Human Articulating Joints. NATO ASI Series, vol 93. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-5117-4_16

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-5117-4_16

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8762-9

  • Online ISBN: 978-94-009-5117-4

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics