Skip to main content

Part of the book series: NATO ASI Series ((NSSE,volume 91))

  • 198 Accesses

Abstract

Many signal processing algorithms are highly regular, data-independent, and access the data in fixed patterns. For these reasons the current technological advances in very large scale integrated circuits hold especially great promise for signal processing, and in fact we now see the development of many highly integrated processors of a more or less specialized nature. At one end of the spectrum, we see programmable signal processing chips that are really microprocessors, with program, memory and logic separated as in a general purpose machine. At the other extreme, we see highly-specialized, custom chips that perform fixed tasks; typically the data moves through the chip along fixed, regular paths, the arithmetic logic is distributed in space, and the “program” is really “hard-wired” into the topology. This talk is devoted to a study of this latter, custom variety of architecture.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Abelson, H. and P. Andreae, “Information Transfer and Area-Time Tradeoffs for VLSI Multiplication,” CACM, Vol. 23: Jan. 1980, pp. 20–23.

    MathSciNet  MATH  Google Scholar 

  2. Bilardi, G., M. Pracchi, and F. P. Preparata, “A Critique an Appraisal of VLSI Models of Computation,” in VLSI Systems and Computation, H. T. Kung, Bob Sproull, and Guy Steele (eds.), Computer Science Press, Rockville, Md., 1981.

    Google Scholar 

  3. Bötcher, K., A. Lacroix, M. Talmi, D, wesseling, “Integrated Floating Point Signal Processor,” Proc. 1982 IEEE Int. Conf. on Acoustics, Speech, and Signal Processing, Paris, May 1982, pp. 1088–91.

    Google Scholar 

  4. Brent, R. P. and H. T. Kung, “The Chip Complexity of Binary Arithmetic,” Proc. 12th Annual ACM Symposium on the Theory of Computing, Los Angeles, Ca., April 1980, pp. 190–200.

    Google Scholar 

  5. Brent, R. P. and H. T. Kung, “The Area-Time Complexity of Binary Multiplication,” JACM, Vol. 28, No. 3, July 1981, pp. 521–534.

    Article  MathSciNet  MATH  Google Scholar 

  6. Cappello, P. R., and K. Steiglitz, “Digital Signal Processing Applications of Systolic Algorithms,” in VLSI Systems and Computations, H.T. Kung, Bob Sproull, and Guy Steele (eds.), Computer Science Press, Rockville, Md., 1981.

    Google Scholar 

  7. Cappello, P.R. and K. Steiglitz, “Bit-Level Fixed-Flow Architectures for Signal Processing,” Proc. 1982 IEEE Int. Conf. on Circuits and Computers, New York, N. Y., Sept. 29–Oct. 1, 1982.

    Google Scholar 

  8. Cappello, P.R. and K. Steiglitz, “A VLSI Layout for a Pipelined Dadda Multiplier,” ACM Trans. on Computer Systems, Vol. 1, No. 2, May 1983, pp. 157–174.

    Article  Google Scholar 

  9. Cappello, P.R. and K. Steiglitz, “A VLSI Layout for a Pipelined Dadda Multiplier,” ACM Trans. on Computer Systems, Vol. 1, No. 2, May 1983, pp. 157–174.

    Article  Google Scholar 

  10. Cappello, P.R. and K. Steiglitz, “A Note on ‘Free’ Accumulation in VLSI Filter Architectures,’ submitted for publication.

    Google Scholar 

  11. Cappello, P. R., A. S. LaPaugh, and K. Steiglitz, “Optimal Choice of Intermediate Latching to Maximize Throughput in VLSI Circuits,” Proc. 1983 IEEE Int. Conf. Acoustics, Speech, and Signal Processing, Boston, Mass., April 14–16, 1983, pp. 935–938. (Also IEEE Trans. on Acoustics, Speech, and Signal Processing, in press.)

    Google Scholar 

  12. Cappello, P. R. and K. Steiglitz, “Unifying VLSI Array Designs with Geometric Transformations,” 1983 IEEE Int. Conf. on Parallel Processing, Aug. 1983.

    Google Scholar 

  13. Caraiscos, C. and B. Liu, “Bit Serial VLSI Implementations of FIR and IIR Digital Filters,” Proc. 1983 Int. Symp. on Circuits and Systems, May 1983

    Google Scholar 

  14. Culik II, K. and J. Pachl, “Folding and Unrolling Systolic Arrays,” Research Report CS-82-11, Faculty of Mathematics, University of waterloo, waterloo, Ontario, Canada, April 1982.

    Google Scholar 

  15. Denyer, P. B. and D. J. Myers, “Carry-Save Arrays for VLSI Signal Processing,” in VLSI 81: Very Large Scale Integration, John P. Gray (ed.), Academic Press, London, 1981.

    Google Scholar 

  16. Denyer, P. B., “An Introduction to Bit-Serial Architectures for VLSI Signal Processing,” Draft of a paper presented at Advanced Course on VLSI Architecture, University of Bristol, U.K., July 1982.

    Google Scholar 

  17. Denyer, P. B. and D. Renshaw, “Case Studies in VLSI Signal Processing using a Silicon Complier,” Proc. 1983 IEEE Int. Conf. on Acoustics, Speech, and Signal Processing, Boston, Mass., 1983, pp. 939–942.

    Google Scholar 

  18. DeMan, H., J. Van Ginderdeuren, and N. Goncalves, “Custom Design of Hardware Digital Filters on I.C.’s,” Proc. Costom Integrated Circuits Conf, Rochester, N. Y., 1982.

    Google Scholar 

  19. Gray, F: G. and R. A. Thompson, “Fault Detection in Bilateral Arrays of Combinational Cells,” IEEE Trans. on Computers”, Vol. C-27, 1978, pp. 1206–1213.

    Article  MathSciNet  Google Scholar 

  20. Johnsson, L. and D. Cohen, “A Mathematical Approach to Modeling the Flow of Data and Control in Computaticnal Networks,” in VLSI Systems and Computation, H. T. Kung, Bob Sproull, and Guy Steele (eds.), Computer Science Press, Rockville, Md., 1981.

    Google Scholar 

  21. Kung, H. T., “Why Systolic Architectures?” Carnegie-Mellon Univ., Dept. of Computer Science, CMU-CS-81-148, Nov. 1981.

    Google Scholar 

  22. Kung, S. Y., and D. V. Bhaskar Rao, “Highly Parallel Architectures for Solving Linear Equations,” Proc. 1981 Int. Conf. on Acoustic, Speech, and Signal Processing, Atlanta, Ga., 1981, pp. 39–42.

    Google Scholar 

  23. Kung, H. T., L. M. Ruane, and D. W. L. Yen, “A Two-Level Pipelined Systolic Array for Convolutions,” in VLSI Systems and Computations, H. T. Kung, Bob Sproull, and Guy Steele (eds.), Computer Science Press, Rockville, Md., 1981.

    Google Scholar 

  24. Leighton, F. T., “New Lower Bound Techniques for VLSI,” Proc. 22nd Annual Symposium on Foundations of Computer Science, Nashville, Tenn., Oct. 1981.

    Google Scholar 

  25. Leighton, F. T., “A Layout Strategy for VLSI which is Provably Good,” Proc. 14th Annual ACM Symposium on the Theory of Computing, San Francisco, Ca., May 1982:

    Google Scholar 

  26. Leiserson C. E., “Area-Efficient Graph Layouts (for VLSI),” Proc. 21st Annual Symposium on Foundations of Computer Science, Syracuse, N.Y., 1980.

    Google Scholar 

  27. Leiserson, C. E. and H. T. Kung, “Algorithms for VLSI Processor Arrays,” Section 8.3 of Introduction to VLSI. Systems, C. Mead and L. Conway, Addison-Wesley Publishing Co., Menlo Park, Ca., 1989.

    Google Scholar 

  28. Lipton, R. J. and R. Sedgewick, “Lower Bounds for VLSI” Proc. 13th Annual ACM Symposium on the Theory of Computing, May 1981, pp. 300–307.

    Google Scholar 

  29. Lipton, R.J., J. Valdes, R. Sedgewick, “Programming Aspects of VLSI,” Proc. 9th Annual ACM Symposium on Principles of Programming Languages, Albuquerque, N. M., Jan. 1982.

    Google Scholar 

  30. Lyon, R. F., “A Bit-Serial VLSI Architecture Methodology for Signal Processing,” in VLSI 81: Very Large Scale Integration, John P. Gray (ed.), Academic Press, London, 1981. (Proceedings of the First International Conference on Very Large Scale Integration, University of Edinburgh, August 18–21, 1981.)

    Google Scholar 

  31. McCanny, J. V., J.G. McWhirter, J. B. G. Roberts, D. J. Day, T. L. Thorp, “Bit Level Systolic Arrays,” Proc. 15th Asilomar Conf. on Circuits, Systems, and Computers, Nov. 1981.

    Google Scholar 

  32. Mead, C. and L. Conway, Introduction to VLSI Systems, Addison-Wesley, Menlo Park, Ca., 1980.

    Google Scholar 

  33. Myers, D. J., “Multipliers for LSI and VLSI Signal Processing Applications,” M. Sc. Project report MSP5, University of Edinburgh, U.K., Sept., 1981.

    Google Scholar 

  34. Oppenheim, A. V., and R. W. Schafer, Digital Signal Processing, Prentice-Hall, Englewood Cliffs, N. J., 1975.

    MATH  Google Scholar 

  35. Preparata, F. P. and J. E. Vuillemin, “Area-Time optimal VLSI Networks Based on the Cube Connected Cycles,” Rapport INRIA #13, Rocquencourt, France, 1980.

    Google Scholar 

  36. Priester, R. W., H. J. Whithouse, K. Bromley, J. B. Clary, “Signal Processing with Systolic Arrays,” Proc. 1981 IEEE Int. Conf. on Parallel Processing, 1981, pp. 207–215.

    Google Scholar 

  37. Rabiner, L. R. and B. Gold, Theory and application of digital signal processing, Prentice-Hall, Inc., Englewood Cliffs, N. J., 1975.

    Google Scholar 

  38. Sastry, S. and S. Klein, “PLATES: A Metric-Free VLSI Layout Language,” Proc. MIT Conf. on Advanced Research in VLSI, Cambridge, Mass., 1982.

    Google Scholar 

  39. Savage, J. E., “Area-Time Tradeoffs for Matrix Multiplication and Related Problems in VLSI Models,” J. Computer and Systems Science, April 1981.

    Google Scholar 

  40. Sung, C.-H., “Testable Sequential Cellular Arrays,” IEEE Trans. on Computers, Vol. C-25, Jan. 1976, pp. 11–18.

    Article  MathSciNet  Google Scholar 

  41. Thompson, C. D., “Area-Time Complexity for VLSI,” Proc. 11th Annual ACM Symposium on the Theory of Computing, April 1979, pp. 81–88.

    Google Scholar 

  42. Vergis, A. and K. Steiglitz, “Testability Conditions for Bilateral Arrays of Combinational Cells,” 1983 IEEE International Conference on Computer Design: VLSI in Computers, New York, Oct. 31–Nov. 3, 1983.

    Google Scholar 

  43. Vuillemin, J., “A Combinatorial Limit to the Computing Power of VISI Circuits,” Proc. 21st Annual Symposium on the Foundations of Computer Science, 1980, pp. 294–300.

    Google Scholar 

  44. Vuillemin, J., “A Very Fast Multiplication Algorithm for VLSI Implementation,” Integration, Vol. 1, 1983, pp. 39–52.

    Google Scholar 

  45. Weiser, U. and A. L. Davis, “Mathematical Representation for VLSI Arrays,” Technical Report UUCS-80-111, Dept. of Computer Science, University of Utah, Salt Lake City, Utah, Sept. 1980.

    Google Scholar 

  46. Weiser, U. and A. L. Davis, “A Wavefront Notation for VLSI Array Design,” in VLSI Systems and Computations, H. T. Kung, Bob Sproull, and Guy Steele (eds.), Computer Science Press, Rockville, Md., 1981.

    Google Scholar 

  47. Williams, F. A., “An Expandable Single-IC Digital Filter/Correlator,” Proc. 1982, IEEE Int. Conf. on Acoustics, Speech, and Signal Processing, Paris, May 1982, pp. 1077–80.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Martinus Nijhoff Publishers, Dordrecht

About this chapter

Cite this chapter

Steiglitz, K. (1985). Hierarchical, Parallel and Systolic Array Processing. In: Skwirzynski, J.K. (eds) The Impact of Processing Techniques on Communications. NATO ASI Series, vol 91. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-5113-6_5

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-5113-6_5

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8760-5

  • Online ISBN: 978-94-009-5113-6

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics