Skip to main content

Filtration Theory: Formation and Structure of Compressible Filter Cakes

  • Chapter
Book cover Mathematical Models and Design Methods in Solid-Liquid Separation

Part of the book series: NATO ASI Series ((NSSE,volume 88))

  • 528 Accesses

Abstract

Recent analyses of cake filtration have been aimed at providing store detailed descriptions of the fluid motion through the cake due to the hydraulic pressure gradient. This gradient causes an inter-facial momentum transfer in the form of viscous drag at the particle-fluid interfaces. If the shape (or the physical strength) of the solids is such that the packing arrangement in the bed can sustain this drag force without further movement, then the cake is regarded as incompressible. However, some particle rearrangement generally occurs to yield a compressible cake. During compression the porosity decreases with tine at any given distance from the filter cloth, and simultaneously a porosity distribution is obtained throughout the depth of the cake. This distribution often ranges from a minimum at the cake/cloth interface to a maximum at the growing cake surface, but instances of a minimum porosity some distance from the filter cloth have been reported 1–3 when characteristics of the solid/liquid system are such that the cake collapses after deposition of a critical amount of solids. The compressive action itself causes the interstitial flow rate of liquid to increase towards the medium.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Rietema, K., Chem. Eng. Sci., 2, 88, 1953.

    Article  CAS  Google Scholar 

  2. Baird, R.L. and Perry, M.G., Filtration and Separation, 4, 471, 1967.

    CAS  Google Scholar 

  3. Wakeman, R.J., Trans. I.Chem.E., 59, 260, 1981.

    CAS  Google Scholar 

  4. Tiller, F.M. and Cooper, H.R., A.I.Ch.E.J., 6, 595, 1960.

    CAS  Google Scholar 

  5. Tiller, F.M. and Shirato, M., Chem. Eng. (Japan), 26, 925, 1962

    Google Scholar 

  6. Tiller, F.M. and Shirato, M., A.I.Ch.E.J., 10, 61, 1964.

    CAS  Google Scholar 

  7. Shirato, M., Sambuichi, M., Kato, H. and Arogaki, T., A.I.Ch.E.J., 15, 405, 1969.

    CAS  Google Scholar 

  8. Wakeman, R.J., Trans. I. Chem. E., 56, 258, 1978.

    CAS  Google Scholar 

  9. Carman, P.C., Trans. I. Chem.E., 16, 168, 1938,

    Google Scholar 

  10. Ruth, B.F., Ind. 4 Eng. Chem., 38, 564, 1946.

    Article  CAS  Google Scholar 

  11. Smiles, D.E., Chem. Eng. Sci., 25, 985, 1970.

    Article  CAS  Google Scholar 

  12. Atsumi, K. and Akiyama, T., J. Chem. Eng. Japan, 8, 487, 1975.

    Article  Google Scholar 

  13. Okamura, S. and Shirato, M., Kagaku Kōgaku, 19, 104, 1955.

    CAS  Google Scholar 

  14. Okamura, S. and shirato, M., Kagaku Kōgaku, 19, 111, 1955.

    CAS  Google Scholar 

  15. Wakeman, R.J., Proc. 2nd World Filtration Congr., 57–65, London, 1979.

    Google Scholar 

  16. Adorjan, L.A., Trans. IKM, 85, 157, 1976.

    Google Scholar 

  17. Lu, W., Tiller, F.M., Cheng, F. and Chien, C., J. Chinese I.Chem.E., 1, 45, 1970.

    CAS  Google Scholar 

  18. Hameed, M.S., Ph.D. Thesis (Manchester University) 1970.

    Google Scholar 

  19. Tiller, F.M., Chem. Eng. Prog., 49, 467, 1953.

    CAS  Google Scholar 

  20. Rushton, A., Turner, N. and Wakeman, R.J., Proc. 1st World Filtration Congr., D-29, Paris, 1974.

    Google Scholar 

  21. Rushton, A. and Hameed, M.S., Filtration and Separation, 6, 136, 1969.

    CAS  Google Scholar 

  22. Rushton, A. and Wakeman, R.J., J. Powder and Bulk Solids Technology, 1, 58, 1977.

    Google Scholar 

  23. Willis, M.S., Shen, M. and Gray, K.R., Can. J. Chem. Eng., 52, 331, 1974.

    Article  CAS  Google Scholar 

  24. Tiller, F.M., Llaynes, S. and Lu, W., A.I.Ch.E.J., 18, 13, 1972.

    CAS  Google Scholar 

  25. Tiller, F.M. and Green, T.C., A.I.Ch.E.J., 19, 1266, 1973.

    CAS  Google Scholar 

  26. Rushton, A. and Rushton, A., Filtration and Separation, 10, 267, 1973.

    CAS  Google Scholar 

  27. Heertjes, P.M., Trans.I.Chem.E., 42, T266, 1964.

    Google Scholar 

  28. Perry, M.G. and Dobson, B., Filtration and Separation, 8, 403, 1971.

    CAS  Google Scholar 

  29. Shirato, M. and Aragaki, T., Filtration and Separation, 9, 290, 1972.

    CAS  Google Scholar 

  30. Wakeman, R.J. and Holdich, R.G., Proc. 3rd World Filtration Congr., 346–353, Philadelphia, 1982.

    Google Scholar 

  31. Willis, M.S., Bridges, W.G., and Collins, R.M., Proc. Filtech Conference, 167–176, London, 1981.

    Google Scholar 

  32. Wakeman, R.J. and Holdich, R.G., Proc. Water Filtration Symposium, 6.47–6.54, Antwerp, 1982.

    Google Scholar 

  33. Happel, J. and Brenner, H., “Low Reynolds Number Hydrodynamics”, Prentice-Hall, Englewood Cliffs, N.J., 1965.

    Google Scholar 

  34. Tiller, F.M. and Leu, W.-F., J. Chin.Inst.Chem. Engrs., 11, 61, 1980.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Martinus Nijhoff Publishers, Dordrecht

About this chapter

Cite this chapter

Wakeman, R.J. (1985). Filtration Theory: Formation and Structure of Compressible Filter Cakes. In: Rushton, A. (eds) Mathematical Models and Design Methods in Solid-Liquid Separation. NATO ASI Series, vol 88. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-5091-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-5091-7_4

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8751-3

  • Online ISBN: 978-94-009-5091-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics