Skip to main content

The endocytic system of Leishmania-infected macrophages

  • Chapter
Mononuclear Phagocytes

Abstract

Leishmania sp. are flagellated protoza which cause significant morbidity and human suffering in tropical and subtropical countries. Different species and subspecies of the parasites induce self-healing cutaneous ulcers, disfiguring and progressive mucocutaneous lesions or visceral disease which can be fatal if left untreated (1, 2). Leishmania are transmitted to man and numerous species of reservoir mammals by the bite of bloodsucking sandflies (3).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 699.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. Manson-Bahr PEC, Apted FIC: Leishmaniasis, Manson’s Tropical Diseases 18th ed, Bailliere Tindall, London 1982, pp. 93–115.

    Google Scholar 

  2. Zuckerman A, Lainson R: Leishmania. In: Kreier JP, ed. Parasitic Protozoa. Acad. Press, New York 1977, Vol. I, pp. 57–133.

    Google Scholar 

  3. Lainson R: The American Leishmaniases: some observations on their ecology and epidemiology. Trans Roy Soc Trop Med Hyg 1983, 77: 569–596.

    Article  PubMed  CAS  Google Scholar 

  4. Mauel J, Behin R: Leishmaniasis: Immunity, immunopathology and immunodiagnosis. In: Cohen S, Warren KS, eds. Immunology of parasitic infections. Blackwell Oxford 1982, pp. 299–355.

    Google Scholar 

  5. Blackwell JM, Alexander J: The macrophage and parasitic protozoa. Trans Roy Soc Trop Med Hyg 1983, 77: 636–645.

    Article  PubMed  CAS  Google Scholar 

  6. Blackwell JM: Genetic control of recovery from visceral leishmaniasis. Trans Roy Soc Trop Med Hyg 1982, 76: 147–151.

    Article  PubMed  CAS  Google Scholar 

  7. Howard JG, Hale C, Liew FY: Genetically determined response mechanisms to cutaneous leishmaniasis. Trans Roy Soc Trop Med Hyg 1982, 76: 152–154.

    Article  PubMed  CAS  Google Scholar 

  8. Potter M, O’Brien AD, Skamene E, Gros P, Forget A, Kongshavn PAL, Wax JS: A BALB/c congenic strain of mice that carries a genetic locus (Ityr) controling resistance to intracellular parasites. Infect Immun 1983, 40: 1234–1235.

    PubMed  CAS  Google Scholar 

  9. Crocker PR, Blackwell JM, Bradley JD: Expression of the natural resistance gene Lsh in resident liver macrophages. Infect Immun 1984, 43: 1033–1040.

    PubMed  CAS  Google Scholar 

  10. Scott P, Sacks D, Sher A: Resistance to macrophage-mediated killing as a factor influencing the pathogenesis of chronic cutaneous leishmaniasis. J Immunol 1983, 131: 966–971.

    PubMed  CAS  Google Scholar 

  11. Titus RG, Kelso A, Louis JA: Intracellular destruction of Leishmania tropica by macrophages activated with macrophage activating factor/interferon. Clin Exp Immunol 1984, 55: 157–165.

    PubMed  CAS  Google Scholar 

  12. Murray HW, Cartelli DM: Killing of intracellular Leishmania donovani by human mononuclear phagocytes. Evidence for oxygen-dependent and independent leishmanicidal activity. J Clin Inv 1983, 72: 32–44.

    Article  CAS  Google Scholar 

  13. Haidaris CG, Bonventre PF: A role for oxygen-dependent mechanisms in killing of Leishmania donovani tissue forms by activated macrophages. J Immunol 1982, 129: 850–855.

    PubMed  CAS  Google Scholar 

  14. Lamy L, Samso A, Lamy H: Installation, multiplication et entretien d’une souche de Leishmania donovani en culture cellulaire. Bull Soc Path Exot 1964, 57: 16–21.

    PubMed  CAS  Google Scholar 

  15. Frothingham TE, Lehtimaki E: Prolonged growth of Leishmania species in cell culture. J Parasitol 1969, 55: 196–199.

    Article  PubMed  CAS  Google Scholar 

  16. Lewis DH: Infection of tissue culture cells of low phagocytic ability by Leishmania mexicana mexicana. Ann Trop Med Parasit 1974, 68: 327–336.

    PubMed  CAS  Google Scholar 

  17. Berens RL, Marr JJ: Growth of Leishmania donovani amastigotes in continuous macrophage-like cell culture. J Protozool 1980, 26: 453–456.

    Google Scholar 

  18. Chang KP: Cellular and molecular mechanisms of intracellular symbiosis in leishmaniasis. Int Rev Cytol 1983, suppl 14:267–305.

    CAS  Google Scholar 

  19. Robineaux R, Dedet JP, Rabinovitch M: Movie: destruction of Leishmania mexicana amazonensis amastigotes within macrophages by phenazine methosulfate. Hôpital Saint-Antoine, Paris 1981.

    Google Scholar 

  20. Rabinovitch M, Dedet JP, Ryter A, Robineaux R, Topper G, Brunet E: Destruction of Leishmania mexicana amazonensis amastigotes within macrophages in culture by phenazine methosulfate and other electron carriers. J Exp Med 1982, 155: 415–431.

    Article  PubMed  CAS  Google Scholar 

  21. Nabi Z, Rabinovitch M: Inhibition by superoxide dismutase and catalase of the damage of isolated Leishmania mexicana amazonensis by phenazine methosulfate. Mol Biochem Parasitol 1984, 10: 297–303.

    Article  PubMed  CAS  Google Scholar 

  22. Biegel D, Topper G, Rabinovitch M: Leishmania mexicana: temperature sensitivity of isolated amastigotes and of amastigotes infecting macrophages in culture. Exp Parasitol 1983, 56: 289–297.

    Article  PubMed  CAS  Google Scholar 

  23. Chang KP, Dwyer DM: Leishmania donovani: hamster macrophage interactions in vitro. Cell entry, intracellular survival, and multiplication of amastigotes. J Exp Med 1978, 147: 515–530.

    Article  PubMed  CAS  Google Scholar 

  24. Berman JD, Fioretti TB, Dwyer DM: In vivo and in vitro localization of Leishmania within macrophage phagolysosomes: use of colloidal gold as a lysosomal label. J Protozool 1981, 28: 239–242.

    PubMed  CAS  Google Scholar 

  25. Ryter A, Dedet JP, Rabinovitch M: Leishmania mexicana: acid phosphatase ultrastructural cytochemistry of infected mouse macrophage cultures treated with phenazine methosulfate. Exp Parasitol 1983, 55: 223–242.

    Article  Google Scholar 

  26. DeJong ASH: Mechanisms of metal-salt methods in enzyme cytochemistry with special reference to acid phosphatase. Histochem J 1982, 14: 1–33.

    Article  CAS  Google Scholar 

  27. Gottlieb M, Dwyer DM: Identification and partial characterization of an extracellular acid phosphatase activity of Leishmania donovani promastigotes. Mol Cell Biol 1982, 2: 76–81.

    PubMed  CAS  Google Scholar 

  28. de Duve C, de Barsy T, Poole B, Trouet A, Tulkens P, van Hoof F: Lysosomotropic agents. Biochem Pharmacol, 1974, 23: 2495–2531.

    Google Scholar 

  29. Shepherd V, Schlesinger P, Stahl P: Receptors for lysosomal enzymes and glycoproteins. Curr Top Membr Transp 1983, 18: 317–338.

    CAS  Google Scholar 

  30. Shepherd VL, Stahl PD, Bernd P, Rabinovitch M: Receptor mediated entry of fl-glucuronidase into the parasitophorous vacuoles of macrophages infected with Leishmania mexicana amazonensis. J Exp Med 1983, 157: 1471–1482.

    Article  PubMed  CAS  Google Scholar 

  31. Rodman JS, Schlesinger P, Stahl P: Rat plasma clearance of horseradish peroxidase and yeast invertase is mediated by specific recognition. FEBS Lett 1978, 85: 345–348.

    Article  PubMed  CAS  Google Scholar 

  32. Kaplan J, Nielsen M: Pinocytic activity of rabbit alveolar macrophages in vitro. J Reticuloendoth Soc 1978, 24: 673–685.

    CAS  Google Scholar 

  33. Sung SSJ, Nelson RS, Silverstein SC: The role of the mannose/N acetyl-glucosamine receptor in the pinocytosis of horseradish peroxidase by mouse peritoneal macrophages. J Cell Physiol 1983, 116: 21–25.

    Article  PubMed  CAS  Google Scholar 

  34. Rabinovitch M, Topper G: Receptor mediated entry of horseradish peroxidase (HRP) and lactoperoxidase (LP) into parasitophorous vacuoles of macrophages infected with L. mexicana amazonensis. J Cell Biol 1983, 97 (pt. 2): 471a.

    Google Scholar 

  35. Steinman RM, Cohn ZA: The interaction of soluble horseradish peroxidase with mouse peritoneal macrophages in vitro. J Cell Biol 1972, 55: 186–204.

    Article  PubMed  CAS  Google Scholar 

  36. Graham RC, Karnovsky MJ: The early stages of the absorption of injected horseradish peroxidase in the proximal tubules of the mouse kidney: ultrastructural cytochemistry by a new technique. J Histochem Cytochem 1966, 14: 291–302.

    Article  PubMed  CAS  Google Scholar 

  37. Buchmüller Y, Mauel J: Studies on the mechanisms of macrophage activation: possible involvement of oxygen metabolites in killing of Leishmania enrietti by activated mouse macrophages. J Reticuloendothel Soc 1981, 29: 181–192.

    PubMed  Google Scholar 

  38. Barbieri C, Rabinovitch M: Depletion of secondary lysosomes in Leishmania mexicana amazonensis-infected macrophages. J Protozool 1983, 30: 6A.

    Google Scholar 

  39. Mellman IS, Plutner H, Steinman RM, Unkeless JC, Cohn ZA: Internalization and degradation of macrophage Fc receptors during receptor-mediated phagocytosis. J Cell Biol 1983, 96: 997–1095.

    Article  Google Scholar 

  40. Steinman RM, Mellman IS, Muller WA, Cohn ZA: Endocytosis and recycling plasma membrane. J Cell Biol 1983, 96: 1–27.

    Article  PubMed  CAS  Google Scholar 

  41. Farquhar MG: Multiple pathways of exocytosis, endocytosis and membrane recycling: validation of a Golgi route. Fed Proc 1983, 42: 2407–2413.

    PubMed  CAS  Google Scholar 

  42. Stenseth K, Hedin U, Thyberg J: Endocytosis, intracellular transport, and turnover of anionic and cationic proteins in cultured mouse macrophages. Eur J Cell Biol 1983, 31: 15–25.

    PubMed  CAS  Google Scholar 

  43. Kielian MC, Cohn ZA: Modulation of phagolysosomelysosome fusion in mouse macrophages. J Exp Med 1981, 153: 1015–1020.

    Article  PubMed  CAS  Google Scholar 

  44. Kielian MC, Steinman RM, Cohn ZA: Intralysosomal accumulation of polyanions: I Fusion of pinocytic and pha-gocytic vacuoles with secondary lysosomes. J Cell Biol 1982, 93: 866–874.

    Article  PubMed  CAS  Google Scholar 

  45. Seglen PO: Inhibitors of lysosomal fusion. Methods in Enzymol 1983, 96: 737–763.

    Article  CAS  Google Scholar 

  46. Alexander J: Leishmania mexicana: inhibition and stimulation of phagosome-lysosome fusion in infected macrophages. Exp Parasitol 1981, 52: 261–270.

    Article  PubMed  CAS  Google Scholar 

  47. Capo C, Farnarier C, Benoliel AM, Bongrand P, Depieds R: Dissociation between phagocytosis and phagosomelysosome fusion. J Reticuloendoth Soc 1983, 34: 359–369.

    CAS  Google Scholar 

  48. Bray RS, Heikal B, Kaye PM, Bray MA: The effect of parasitization by Leishmania mexicana mexicana on macrophage function in vitro. Acta Trop 1983, 40: 29–38.

    PubMed  CAS  Google Scholar 

  49. Kutish GF, Janovy Jr J: Inhibition of in vitro macrophage digestion capacity by infection with Leishmania donovani. J Parasitol 1981, 67, 457–462.

    Article  PubMed  CAS  Google Scholar 

  50. Dedet JP, Brunet E, Topper G, Rabinovitch M: Localization of exogenous markers in relation to the parasitophorous vacuoles of macrophages infected with Leishmania mexicana amazonensis. J Cell Biol 1981, 91: 242a.

    Google Scholar 

  51. Steck EA: The leishmaniases. Progr Drug Res 1974, 18: 289–351.

    CAS  Google Scholar 

  52. Davis-Scibienski C, Beaman BL: Interaction of Nocardia asteroides with rabbit alveolar macrophages: association of virulence, viability, ultrastructural damage, and phagosome-lysosome fusion. Infect Immun 1980, 28: 610–619.

    PubMed  CAS  Google Scholar 

  53. Beaman L, Benjamini E, Pappagianis D: Activation of macrophages by lymphokines: enhancement of phagosome-lysosome fusion and killing of Coccidioides immitis. Infect Immun 1983, 39: 1201–1207.

    PubMed  CAS  Google Scholar 

Download references

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 1985 Martinus Nijhoff Publishers, Dordrecht

About this chapter

Cite this chapter

Rabinovitch, M. (1985). The endocytic system of Leishmania-infected macrophages. In: van Furth, R. (eds) Mononuclear Phagocytes. Springer, Dordrecht. https://doi.org/10.1007/978-94-009-5020-7_64

Download citation

  • DOI: https://doi.org/10.1007/978-94-009-5020-7_64

  • Publisher Name: Springer, Dordrecht

  • Print ISBN: 978-94-010-8723-0

  • Online ISBN: 978-94-009-5020-7

  • eBook Packages: Springer Book Archive

Publish with us

Policies and ethics