The seasonality of phytoplankton in the North American Great Lakes, a comparative synthesis

  • Mohiuddin Munawar
  • Iftekhar F. Munawar
Part of the Developments in Hydrobiology book series (DIHY, volume 33)


The phytoplankton and productivity of the North American Great Lakes has been studied extensively by Fisheries and Oceans Canada during the past 15 years to monitor the impact of nutrient and contaminant loading on the plankton of the ecosystem. Lakewide cruises were conducted at monthly intervals mainly during the spring to fall period. This provided extensive biomass, species, size, productivity and nutrient concentration data for the Great Lakes. These data were collected using the Utermöhl inverted microscope technique together with standardized taxonomic, productivity and data-handling procedures. These standardized methodologies were applied to all the Great Lakes which resulted in a comprehensive phycological and ecological data base for the first time. These data form the basis for the evaluation of the complex phenomenon of seasonality.

The eutrophic/mesotrophic Lower Great Lakes exhibited well-developed seasonal peaks of high biomass, with inshore-offshore differentiation and spring maxima most pronounced in the inshore region. However, the oligotrophic Upper Great Lakes had a low biomass and generally lacked well-developed seasonal patterns. No marked seasonal trends were observed in the ultra-oligotrophic Lake Superior. The seasonality of biomass and various taxonomic groups of phytoplankton showed differentiation between individual lakes and is discussed in detail. The seasonal succession of species provided interesting comparisons between the Lower Great Lakes, which harbour eutrophic and mesotrophic species, and the Upper Great Lakes, which harbour oligotrophic species.

Due to the voluminous nature of our data, a general overview has been given for all the Great Lakes with Lake Ontario treated in detail as a case study. The Lake Ontario case study provides the state-of-the-art status ranging from the lakewide surveys of 1970 to the current research with minute organism such as ultraplankton and picoplankton.


Great Lake Total Phosphorous Central Basin Western Basin Eastern Basin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Bailey-Watts, A. E., 1985. Seasonal variation in size spectra of phytoplankton assemblages in Loch Leven, Scotland. In M. Munawar & J. F. Tailing (eds), Seasonality of phytoplankton: a global perspective. Dev. Hydrobiol. (in press).Google Scholar
  2. Bennett, E. B., 1978. Characteristics of the thermal regime of Lake Superior. J. Great Lakes Res. 4: 310–319.CrossRefGoogle Scholar
  3. Brunei, J., 1956. Addition du Stephanodiscus binderanusa la flore diatomique de l’Amerique du nord. Le Naturaliste Canadien. 83: 89–95.Google Scholar
  4. Claflin, L. W., 1986. Associations between the phytoplanktonic and physicochemical regimes of Lake Michigan. In M. Munawar (ed.), Proceedings of the symposium on the phycology of large lakes of the world. Arch. Hydrobiol. Beih., Ergebn. Limnol. (24) (In press).Google Scholar
  5. Cooley, W. W. & P. R. Lohnes, 1971. Multivariate data analysis. J. Wiley and sons, Inc. N.Y. pp. 504.Google Scholar
  6. Dobson, H. F. H., 1984. Lake Ontario water chemistry atlas. Scientific Series No. 139. Inland Waters Directorate, NWRI, CCIW, Burlington, Ontario.Google Scholar
  7. El-Shaarawi, A. & M. Munawar, 1978. Statistical evaluation of the relationship between phytoplankton biomass, chlorophyll a, and primary production in Lake Superior. In M. Munawar (ed.), Limnology of Lake Superior, J. Great Lakes Res. 4: 443 - 455.Google Scholar
  8. Gächter, R., R. A. Vollenweider & W. A. Glooschenko, 1974. Seasonal variations of temperature and nutrients in the surface waters of lakes Ontario and Erie. J. Fish. Res. Bd Can. 31: 275–290.CrossRefGoogle Scholar
  9. Herdendorf, C. E., 1982. Large lakes of the world. J. Great Lakes Res. 8: 379–412.CrossRefGoogle Scholar
  10. Holland, R. E., 1965. The distribution and abundance of planktonic diatoms in Lake Superior. In Proceedings, Eight Conf. Great Lakes Research, Great Lakes Res. Div. publ. 13, pp. 96–105.Google Scholar
  11. Holland, R. E., 1968. Correlation of Melosiraspecies with trophic conditions in Lake Michigan. Limnol. Ocanogr. 13: 555–557.Google Scholar
  12. Johnson, P. W. & J. M. Sieburth, 1982. In-situ morphology and occurrence of eucaryotic phototrophs of bacterial size in the picoplankton of estuarine and oceanic waters. J. Phycol. 18: 318–327.CrossRefGoogle Scholar
  13. Kalff, J., 1967. Phytoplankton abundance and primary production rates in two arctic ponds. Ecology 48: 558–565.CrossRefGoogle Scholar
  14. Kalff, J., 1972. Netplankton and nannoplankton production and biomass in a northern temperate zone lake. Limnol. Oceanogr. 17: 712–719.Google Scholar
  15. Kristiansen, J., 1971. Phytoplankton of two Danish lakes, with special reference to seasonal cycles of the nannoplankton. Mitt. Int. Ver. Limnol. 19: 253–265.Google Scholar
  16. Li, W. K. W., D. V. Subba Rao, W. G. Harrison, J. G. Smith, J. J. Cullen, B. Irwin & T. Piatt, 1983. Autotrophic picoplankton in the tropical ocean. Science 219: 292–295.PubMedCrossRefGoogle Scholar
  17. Lind, O. T. & R. S. Campbell, 1969. Comments on the use of liquid scintillation for routine determine of C-14 activity in production studies. Limnol. Oceanogr. 14: 787–789.Google Scholar
  18. Lorefice, G. J. & M. Munawar, 1974. The abundance of diatoms in the southwestern nearshore region of Lake Ontario during the spring thermal bar period. Proc. 17th Conf. Great Lakes Res. 619–628.Google Scholar
  19. Lund, J. W. G., C. Kipling & E. D. LeCren, 1958. The inverted microscope method of estimating algal numbers and the statistical basis of estimation by counting. Hydrobiologia 9: 143–170.CrossRefGoogle Scholar
  20. Munawar, M., 1982. Toxicity studies on natural phytoplankton assemblages by means of fractionation bioassays. Can. Tech. Report Fish. Aquat. Sci. No. 1152: i-vi, 1–17.Google Scholar
  21. Munawar, M. & G. L. Fahnenstiel, 1982. The abundance and significance of ultraplankton and micro-algae at an offshore station in central Lake Superior. Can. Tech. Report Fish. Aquat. Sci. No. 1153: i-vi, 1–13.Google Scholar
  22. Munawar, M., A. Mudroch, I. F. Munawar & R. L. Thomas, 1983. The impact of sediment-associated contaminants from the Niagara River mouth on various size assemblages of phytoplankton. J. Great Lakes Res. 9: 303–313.CrossRefGoogle Scholar
  23. Munawar, M. & I. F. Munawar, 1975. Abundance and significance of phytoflagellates and nannoplankton in the St. Lawrence Great Lakes. Verh. int. Ver. Limnol. 19: 705–723.Google Scholar
  24. Munawar, M. & I. F. Munawar, 1976. A lakewide study of phytoplankton biomass and its species composition in Lake Erie, April-December, 1970. J. Fish. Res. Bd Can. 33: 581–600.CrossRefGoogle Scholar
  25. Munawar, M. & I. F. Munawar, 1978. Phytoplankton of Lake Superior, 1973. In M. Munawar (ed.), Limnology of Lake Superior, J. Great Lakes Res. 4: 415–442.Google Scholar
  26. Munawar, M. & I. F. Munawar, 1981. A general comparison of the taxonomic composition and size analyses of the phytoplankton of the North American Great Lakes. Verh. int. Ver. Limnol. 21: 1695–1716.Google Scholar
  27. Munawar, M. & I. F. Munawar, 1982. Phycological studies in Lake Ontario, Erie, Huron and Superior. Can. J. Bot. 60: 1837–1858.CrossRefGoogle Scholar
  28. Munawar, M. & I. F. Munawar, 1984. (Abstract) Sensitivity of ultraplankton and picoplankton to contaminants and its ecological significance. Paper presented at the annual meeting of American Society of Limnology and Oceanography, University of British Columbia, Vancouver. June, 1984.Google Scholar
  29. Munawar, M., I. F. Munawar, L. Michell, S. Chu, and W. P. Norwood. 1984. (Abstract). Autotrophic picoplankton in the North American Great Lakes and their sensitivity to contaminants. Paper presented at the Ocean Sciences Meeting, New Orleans, January 1984.Google Scholar
  30. Munawar, M., I. F. Munawar, P. E. Ross & A. Dagenais, 1982. Microscopic evidence of phytoplankton passing through glass-fibre filters and its implications for chlorophyll analysis. Arch. Hydrobiol. 94: 521–529.Google Scholar
  31. Munawar, M., I. F. Munawar, L. R. Culp & G. Dupuis, 1978. Relative importance of nannoplankton in Lake Superior phytoplankton biomass and community metabolism. In M. Munawar (ed.), Limnology of Lake Superior, J. Great Lakes Res. 4: 462–480.Google Scholar
  32. Munawar, M. & A. Nauwerck, 1971. The composition and horizontal distribution of phytoplankton in Lake Ontario during the year 1970. In Proc. 14th Conf. Great Lakes Res., Internat. Assoc. Great Lakes Res., pp. 69–78.Google Scholar
  33. Munawar, M. & W. G. Sprules, 1985. Comparison of 1973 and 1983 Lake Superior plankton communities. Report submitted to the Lake Superior Task Force. International Joint Commission.Google Scholar
  34. Munawar, M., P. Stadelmann & I. F. Munawar, 1974. Phytoplankton biomass, its species composition and primary production at a nearshore and midlake station of Lake Ontario during IFYGL. In Proc. 17th Conf. Great Lakes Res., Internat. Assoc. Great Lakes Res., pp. 629–652.Google Scholar
  35. Munawar, M. & J. B. Wilson, 1978. Phytoplankton-zooplankton associations in Lake Superior: A statistical approach. In M. Munawar (ed.), Limnology of Lake Superior, J. Great Lakes Res. 4: 497–504.Google Scholar
  36. Nauwerck, A., 1963. Die Beziehungei zwiscnei zoopiankton und Phytoplankton lm See Erken. Symb. Bot. Upsal. 17: 1–163.Google Scholar
  37. Nie, N. H,. C. H. Hull, J. G. Jenkins, K. Steinbrenner & D. H. Bent, 1975. SPSS. Statistical Package for the Social Sciences. 2nd Edition, McGraw-Hill Co. New York, pp 675Google Scholar
  38. Pavoni, M., 1963. Die Bedeutung des Nannoplanktons im Vergleich zum Netplankton. Qualitative und quantitative Untersuchungen im Zurichsee, Pfaffikersee und andere Schweiz. Z. Hydrol. 25: 219–341.Google Scholar
  39. Reid, F. M. H., 1983. Biomass estimation of components of the marine nannoplankton by the Utermöhl settling technique. J. Plankton Res. 5: 235–252.CrossRefGoogle Scholar
  40. Ross, P. E. & M, Munawar, 1981. Preference for nannoplankton size fractions in Lake Ontario zooplankton grazing. J. Great Lakes Research 7: 65–67.CrossRefGoogle Scholar
  41. Ross, P. E. & M, Munawar, 1981. Preference for nannoplankton size fractions in Lake Ontario zooplankton grazing. J. Great Lakes Research 7: 65–67.CrossRefGoogle Scholar
  42. Schroeder, R., 1969. Ein summierender Wasserschopfer. Arch. Hydrobiol. 66: 241–243.Google Scholar
  43. Sprules, W. G. & M. Munawar, 1986. Structural patterns in aquatic ecosystems. Can. J. Fish. Aquat. Sci. (In press).Google Scholar
  44. Stadelmann, P. & J. E. Moore, 1974. Measurements and prediction of primary production at an offshore station in Lake Ontario. Fish. Res. Bd Can. Tech. Rep. 445.Google Scholar
  45. Stadelmann, P. & M. Munawar, 1974. Biomass parameters and primary production at a nearshore and a midlake station of Lake Ontario during IFYGL (IFYGL). Proc. 17th Conf. Great Lakes Res. pp. 109–119. Internat. Assoc. Great Lakes Res.Google Scholar
  46. Strickland, J. D. H. & T. R. Parsons, 1968. A practical handbook of seawater analysis. Bull. 167, Fish. Res. Bd Can., Ottawa.Google Scholar
  47. Sweers, H. E., 1969. Structure, dynamics and chemistry of Lake Ontario. Manuscript report series no. 10, Marine Sciences Branch, Department of Energy, Mines and Resources. Ottawa, Canada.Google Scholar
  48. Tailing, J. F., 1969. Relations between primary production population density (‘standing crop’) In R. A. Vollenweider (ed.), A Manual on methods for measuring primary production in aquatic environments. Blackwell Scientific Publications: 125–127.Google Scholar
  49. Tarapchak, S. J. & E. F. Stoermer, 1976. Environmental status of the Lake Michigan region (Volume 4). Argonne National Laboratory, Argonne, Illinois.Google Scholar
  50. Utermöhl, H., 1958. Zur Vervollkommnung der quantitativen Phytoplankton-Methodik. Mitt. int. Ver. Limnol. 9: 1–38.Google Scholar
  51. Verduin, J., 1972. Metabolism of the dominant autotrophs of the North American Great Lakes. Verh. int. Ver. Limnol. 18: 105–112.Google Scholar
  52. Vollenweider, R. A., 1969. A manual on methods for measuring primary production in aquatic environments. IBP Handb. 12. Blackwell Scient. Publ., Oxford.Google Scholar
  53. Vollenweider, R. A., M. Munawar & P. Stadelmann, 1974. A comparative review of phytoplankton and primary production in the Laurentian Great Lakes. J. Fish Res. Bd Can. 31: 739–762.CrossRefGoogle Scholar
  54. Water Quality Branch, Inland Water Directorate, 1979. Analytical Methods Manual. Ottawa: Environment Canada.Google Scholar
  55. Watson, N. H., H. F. Nicholson & L. R. Culp, 1975. Chlorophyll aand primary production in Lake Superior, May- November, 1973. Fish. Mar. Tech. Rep. No. 525, 30 pp.Google Scholar
  56. Weiler, R. R., 1978. Chemistry of Lake Superior. J. Great Lakes Res. 4: 370 - 385.CrossRefGoogle Scholar
  57. Weiler, R. R., 1981. Chemistry of the North American Great Lakes. Verh. int. Ver. Limnol. 21: 1681 - 1694.Google Scholar
  58. Willén, T., 1959. The phytoplankton of Gorwalm, a bay of Lake Malaren. Oikos 10: 241–274CrossRefGoogle Scholar

Copyright information

© Dr W. Junk Publishers, Dordrecht 1986

Authors and Affiliations

  • Mohiuddin Munawar
    • 1
  • Iftekhar F. Munawar
    • 2
  1. 1.Fisheries and Oceans Canada, Great Lakes Fisheries Research BranchCanada Centre For Inland WatersBurlingtonCanada
  2. 2.Plankton CanadaBurlingtonCanada

Personalised recommendations