Experimental manipulations of the phytoplankton periodicity in large limnetic enclosures in Blelham Tarn, English Lake District

  • C. S. Reynolds
Part of the Developments in Hydrobiology book series (DIHY, volume 33)


This paper reviews the results of experimental manipulations, carried out during the period 1977–1983, on the phytoplankton maintained in the limnetic enclosures at Blelham Tarn, English Lake District. Three categories of manipulations are considered.

The effects of variation in the scale and frequency of phosphorus loading (range: 0.3 to 2.5 g P m-2 a-1) upon the mean phytoplankton biomass, its seasonal distribution and specific dominance are shown to conform to well-established patterns and relationships observed in natural lakes. Much of the seasonal variability in species dominance occurred independently of nutrient ratios, though carbon availability has been critical at times. Attempts to manipulate the rates of removal of phytoplankton by grazing have confirmed that they act selectively against certain smaller species only, that they alter the rate of successional change, rather than its direction, and that they have little lasting influence upon the total phytoplankton standing crop. Attempts to manipulate rates of sinking loss through artificial enlargement of the epilimnetic circulation also regulated the light-conditions experienced by suspended phytoplankton.

Growth-rate relationships to an index of light exposure and to temperature fluctuation are also derived for several species and are related to morphological and physiological characters of the organisms concerned. These interpretations are briefly reviewed in relation to periodic cycles in natural lakes.


seasonality phytoplankton enclosures manipulation growth-rate regulation 


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. Allen, T. F. H. & J. F. Koonce, 1973. Multivariate approaches to algal stratagems in systems analysis of phytoplankton. Ecology 54: 1234 – 1247.CrossRefGoogle Scholar
  2. Crumpton, W. G. & R. G. Wetzel, 1982. Effects of differential growth and mortality in the seasonal succession of phytoplankton populations in Lawrence Lake, Michigan. Ecology 63: 1729 – 1739.CrossRefGoogle Scholar
  3. Dillon, P. J. & F. H. Rigler, 1974. The phosphorus-chlorophyll relationship in lakes. Limnol. Oceanogr. 19: 767 – 773.CrossRefGoogle Scholar
  4. Ferguson, A. J. D., J. M. Thompson & C. S. Reynolds, 1982. Structure and dynamics of zooplankton communities maintained in closed systems, with special reference to the algal food supply. J. Plankton Res. 4: 523 – 543.CrossRefGoogle Scholar
  5. Gächter, R., 1979. MELIMEX, an experimental heavy metal pollution study: goals, experimental design and major findings. Schweiz. Z. Hydrol. 41: 169 – 176.CrossRefGoogle Scholar
  6. George, D. G., 1983. Interactions between zooplankton and phytoplankton distribution profiles in two large limnetic enclosures. J. Plankton Res. 5: 457 – 475.CrossRefGoogle Scholar
  7. Harris, G. P., 1978. Photosynthesis, productivity and growth: the physiological ecology of phytoplankton. Ergebn. Limnol. 10: 1 – 163.Google Scholar
  8. Harris, G. P., 1980. Temporal and spatial scales in phytoplankton ecology. Mechanisms, methods, models and management. Can. J. Fish, aquat. Sci. 37: 877 – 900.CrossRefGoogle Scholar
  9. Harris, G. P., 1983. Mixed layer physics and phytoplankton populations: studies in equilibrium and non-equilibrium ecology. Prog. Phycol. Res. 2: 1 – 52.Google Scholar
  10. Harris, G. P. & B. B. Piccinin, 1980. Physical variability and phytoplankton communites, 4. Temporal changes in the phytoplankton community of a physically variable lake. Arch. Hydrobiol. 89: 447 – 473.Google Scholar
  11. Heaney, S. I., D. V. Chapman & H. R. Morison, 1983. The role of the cyst stage in the seasonal growth of the dinoflagellate Ceratium hirundinellawithin a small productive lake. Br. phycol. J. 18: 47 – 59.CrossRefGoogle Scholar
  12. Hutchinson, G. E., 1967. A treatise on limnology. Vol. 2. Introduction to lake biology and the limnoplankton. Wiley-Interscience, N.Y., 1115 pp.Google Scholar
  13. Irish, A. E. & R. T. Clarke, 1984. Sampling designs for the estimation of phytoplankton abundance in limnetic environments. Br. phycol. J. 19: 57 – 66.CrossRefGoogle Scholar
  14. Jaworski, G. H. M., J. F. Tailing & S. I. Heaney, 1981. The influence of carbon dioxide-depletion on growth and sinking rate of two planktonic diatoms in culture. Br. phycol. J. 16: 395 – 410.CrossRefGoogle Scholar
  15. Johnson, W. E. & J. R. Vallentyne, 1971. Rationale, background and development of experimental lake studies in northwestern Ontario. J. Fish. Res. Bd Can. 28: 123 – 128.CrossRefGoogle Scholar
  16. Jones, R. A. & G. F. Lee, 1982. Recent advances in assessing impact of phosphorus loads on eutrophication-related water quality. Wat. Res. 16: 503 – 515.CrossRefGoogle Scholar
  17. Kilham, P., 1971. A hypothesis concerning silica and the fresh-water planktonic diatoms. Limnol. Oceanogr. 16: 10 – 18.CrossRefGoogle Scholar
  18. Knoechel, R. & J. Kalff, 1978. An in situ study of the productivity and population dynamics of five freshwater plankton diatom species. Limnol. Oceanogr. 23: 195 – 218.CrossRefGoogle Scholar
  19. Lack, T. J. & J. W. G. Lund, 1974. Observations and experiments on the phytoplankton of Blelham Tarn, English Lake District 1. The experimental tubes. Freshwat. Biol. 4: 399 – 415.CrossRefGoogle Scholar
  20. Lampert, W. & U. Schober, 1980. The importance of ‘threshold’ food concentrations. In W. C. Kerfoot (ed.), Evolution and ecology of zooplankton communities. University Press of New England, Hanover, New Hampshire: 264 – 267.Google Scholar
  21. Lean, D. R. S., M. N. Charlton, B. K. Burnison, T. P. Murphy, S. E. Millards & K. R. Young, 1975. Phosphorus: changes in ecosystem metabolism from reduced loading. Verh. int. Ver. theor. angew. Limnol. 19: 249 – 257.Google Scholar
  22. Lee, G. F., W. Rast & R. A. Jones, 1978. Eutrophication of water bodies: insights for an age-old problem. Envir. Sci. Technol. 12: 900 – 908.CrossRefGoogle Scholar
  23. Lehman, J. T., 1976. Ecological and nutritional studies on DinobryonEhrenb.: seasonal periodicity and the phosphate toxicity problem. Limnol. Oceanogr. 21: 646 – 658.CrossRefGoogle Scholar
  24. Lewis, W. M., 1978. Dynamics and succession of the phytoplankton in a tropical lake: Lake Lanao, Philippines. J. Ecol. 66: 849 – 880.CrossRefGoogle Scholar
  25. Lund, J. W. G., 1965. The ecology of the freshwater phytoplankton. Biol. Rev. 40: 231 – 293.CrossRefGoogle Scholar
  26. Lund, J. W. G., 1971. An artificial alteration of the seasonal cycle of the plankton diatom Melosira italica subsp. subarctica in an English lake. J. Ecol. 59: 521 – 533.CrossRefGoogle Scholar
  27. Lund, J. W. G., 1972. Preliminary observations on the use of large experimental tubes in lakes. Verh. int. Ver. theor. angew. Limnol. 18: 71 – 77.Google Scholar
  28. Lund, J. W. G., 1975. The use of large experimental tubes in lakes. In R. E. Youngman (ed.), The effects of storage on water quality. Wat. Res. Cent., Medmemham, England: 291 – 312.Google Scholar
  29. Lund, J. W. G., 1978. Changes in the phytoplankton of an English lake, 1945–1977. Hydrobiol. J. 14 (1): 6 – 21.Google Scholar
  30. Lund, J. W. G., 1981. Investigations on phytoplankton, with special reference to water usage. Occ. Pubis Freshwat. Biol. Ass. 13: 64 pp.Google Scholar
  31. Lund, J. W. G., G. H. M. Jaworski & C. Butterwick, 1975. Algal bioassay of water from Blelham Tarn, English Lake District, and the growth of planktonic diatoms. Arch. Hydrobiol., Suppl. 49: 49 – 69.Google Scholar
  32. Lund, J. W. G. & C. S. Reynolds, 1982. The development and operation of large limnetic enclosures in Blelham Tarn, English Lake, District, and their contribution to phytoplankton ecology. Prog, phycol. Res. 1: 1 – 65.Google Scholar
  33. Margalef, R., 1958. Temporal succession and spatial heterogeneity in phytoplankton. In A. A. Buzzati-Traverso (eds.), Perspectives in marine biology. University of California Press, Berkeley: 323 – 349.Google Scholar
  34. Margalef, R., 1961. Communication of structure in planktonic populations. Limnol. Oceanogr. 6: 124 – 128.CrossRefGoogle Scholar
  35. Menzel, D. W. & J. Case, 1977. Controlled ecosystem pollution experiment: concept and design. Bull. mar. Sci. 27: 1 – 7.Google Scholar
  36. Rast, W., A. Jones & G. F. Lee, 1983. Predictive capability of U.S. OECD phosphorus loading eutrophication response models. J. Wat. Pollut. Cont. Fed. 55: 990 – 1003.Google Scholar
  37. Reynolds, C. S., 1971. Investigations on the phytoplankton of Crose Mere and other standing waters of the Shropshire-Cheshire Plain. PhD Thesis, Univ. Lond., 201 pp.Google Scholar
  38. Reynolds, C. S., 1980a. Phytoplankton assemblages and their periodicity in stratifying lake systems. Holarc. Ecol. 3: 141 – 159.Google Scholar
  39. Reynolds, C. S., 1980b. Processes controlling the quantities of biogenic materials in lakes and reservoirs subject to cultural eutrophication. Pollut. Rep. Dep. Envir. U.K. 8: 45 – 62.Google Scholar
  40. Reynolds, C. S., 1982. Phytoplankton periodicity: its motivation, mechanisms and manipulation. Rep. Freshwat. biol. Ass. 50: 60 – 75.Google Scholar
  41. Reynolds, C. S., 1983a. Growth-rate responses of Volvox aureus Ehrenb. (Chlorophyta, Volvocales) to variability in the physical environment. Br. phycol. J. 18: 433 – 442.CrossRefGoogle Scholar
  42. Reynolds, C. S., 1983b. A physiological interpretation of the dynamic responses of a planktonic diatom to physical variability of the environment. New Phytol. 95: 41 – 53.CrossRefGoogle Scholar
  43. Reynolds, C. S., 1984a. The ecology of freshwater phytoplankton. Cambridge University Press, Cambridge, England, 384 pp.Google Scholar
  44. Reynolds, C. S., 1984b. Phytoplankton periodicity: the interactions of form, function and environmental variability. Freshwat. Biol. 14: 111 – 142.CrossRefGoogle Scholar
  45. Reynolds, C. S., 1984c. Artificial induction of surface blooms of Cyanobacteria. Verh. int. Ver. theor. angew. Limnol. 22: 638 – 643.Google Scholar
  46. Reynolds, C. S. & C. Butterwick, 1979. Algal bioassay of unfertilized and artifically fertilized lake water maintained in Lund Tubes. Arch. Hydrobiol., Suppl. 56: 166 – 183.Google Scholar
  47. Reynolds, C. S., J. M. Thompson, A. J. D. Ferguson & S. W. Wiseman, 1982. Loss processes in the population dynamics of phytoplankton maintained in closed systems. J. Plankton Res. 4: 561 – 600.CrossRefGoogle Scholar
  48. Reynolds, C. S. & A. E. Walsby, 1975. Water blooms. Biol. Rev. 50: 437 – 481.CrossRefGoogle Scholar
  49. Reynolds, C. S. & S. W. Wiseman, 1982. Sinking losses of phytoplankton maintained in closed limnetic systems. J. Plankton Res. 4, 489 – 522.CrossRefGoogle Scholar
  50. Reynolds, C. S., S. W. Wiseman & M. J. O. Clarke, 1984. Growth- and loss-rate responses of phytoplankton to intermittent artificial mixing and their potential application to the control of planktonic algal biomass. J. appl. Ecol. 21: 11 – 39.CrossRefGoogle Scholar
  51. Reynolds, C. S., S. W. Wiseman, B. M. Godfrey & C. Butterwick, 1983. Some effects of artificial mixing on the dynamics of phytoplankton in large limnetic enclosures. J. Plankton Res. 5: 203 – 234.CrossRefGoogle Scholar
  52. Rhee, G.-Y., 1978. Effects of NP atomic ratios and nitrate limitation and algal growth, cell composition and nitrate uptake. Limnol. Oceanogr. 23: 10 – 25.CrossRefGoogle Scholar
  53. Rhee, G.-Y., 1982. Effect of environmental factors and their interactions on phytoplankton growth. In K. D. Marshall (ed.), Advances in microbial ecology, 6. Plenum Press, Lond.: 33 – 74.Google Scholar
  54. Rhee, G.-Y. & I. J. Gotham, 1980. Optimum N:P ratios and coexistence of planktonic algae. J. Phycol. 16: 486 – 489.CrossRefGoogle Scholar
  55. Rhee, G.-Y. & I. J. Gotham, 1981. The effect of environmental factors on phytoplankton growth: temperature and the interactions of temperature with nutrient limitation. Limnol. Oceanogr. 26: 635 – 648.CrossRefGoogle Scholar
  56. Rodhe, W., 1948. Environmental requirements of freshwater plankton algae. Symb. bot. ups. 10: 5 – 149.Google Scholar
  57. Round, F. E., 1971. The growth and succession of algal populations in freshwaters. Mitt. int. Ver. theor. angew. Limnol. 19: 70 – 99.Google Scholar
  58. Sakamoto, M., 1966. Primary production by phytoplankton community in some Japanese lakes and its dependence on lake depth. Arch. Hydrobiol. 62: 1 – 28.Google Scholar
  59. Smyly, W. J. P., 1976. Some effects of enclosure on the zooplankton in a small lake. Freshwat. Biol. 6: 241 – 251.CrossRefGoogle Scholar
  60. Sommer, U., 1981. The role of r- and K-selection in the succession of phytoplankton in Lake Constance. Acta oecol. 2: 327 – 342.Google Scholar
  61. Sommer, U., 1984. The paradox of the plankton: fluctuations of phosphorus availability maintain diversity of phytoplankton in flow through cultures. Limnol. Oceanogr. 29: 633 – 636.CrossRefGoogle Scholar
  62. Sournia, A., 1982. Form and function in marine phytoplankton. Biol. Rev. 57: 347 – 394.CrossRefGoogle Scholar
  63. Stephenson, G. L., P. Hamilton, N. K. Kaushik, J. B. Robinson & K. R. Solomon, 1984. Spatial distribution of plankton in enclosures of three sizes. Can. J. Fish, aquat. Sci. 41: 1048 – 1054.CrossRefGoogle Scholar
  64. Tailing, J. F., 1962. Freshwater algae. In R. A. Lewin (ed.), Physiology and biochemistry of algae. Academic Press, Lond.: 743 – 757.Google Scholar
  65. Tailing, J. F., 1976. The depletion of carbon dioxide from lake waters by phytoplankton. J. Ecol. 64: 79 – 121.CrossRefGoogle Scholar
  66. Thompson, J. M., A. J. D. Ferguson & C. S. Reynolds, 1982. Natural filtration rates of zooplankton in a closed system: the derivation of a community grazing index. J. Plankton Res. 4: 545 – 560.CrossRefGoogle Scholar
  67. Tilman, D., 1977. Resource competition between planktonic algae: an experimental and theoretical approach. Ecology 58: 338 – 348.CrossRefGoogle Scholar
  68. Tilman, D. & S. S. Kilman, 1976. Phosphate and silicate growth and uptake kinetics of the diatoms Asterionella formosa and Cyclotella meneghiniana in batch and semicontinuous culture. J. Phycol. 12: 375–383.Google Scholar
  69. Tilman, D., S. S. Kilman & P. Kilham, 1982. Phytoplankton community ecology: the role of limiting nutrients. Ann. Rev. Ecol. Syst. 13: 349 – 372.CrossRefGoogle Scholar
  70. Trimbee, A. M. & G. P. Harris, 1984. Phytoplankton population dynamics of a small reservoir: effect of intermittent mixing on phytoplankton succession and the growth of blue-green algae. J. Plankton Res. 6: 699 – 713.CrossRefGoogle Scholar
  71. Vollenweider, R. A., 1976. Advances in defining critical loading levels for phosphorus in lake eutrophication. Mem. 1st. ital. Idrobiol. 33: 53 – 83.Google Scholar
  72. Vollenweider, R. A. & J. Kerekes, 1980. The loading concept as basis for controlling eutrophication philosophy and prelimi¬nary results of the OECD programme on eutrophication. Prog. Wat. Technol. 12 (2): 5 – 38.Google Scholar

Copyright information

© Dr W. Junk Publishers, Dordrecht 1986

Authors and Affiliations

  • C. S. Reynolds
    • 1
  1. 1.Freshwater Biological AssociationCumbriaUK

Personalised recommendations